These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37947737)

  • 1. An Investigation on the Use of Au@SiO
    Eldridge BK; Gomrok S; Barr JW; Chaffin EA; Fielding L; Sachs C; Stickels K; Williams P; Wang Y
    Nanomaterials (Basel); 2023 Nov; 13(21):. PubMed ID: 37947737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon Enhanced Fluorescence and Raman Scattering by [Au-Ag Alloy NP Cluster]@SiO
    Zhang C; Zhang T; Zhang Z; Zheng H
    Front Chem; 2019; 7():647. PubMed ID: 31616656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toroidal dipole-modulated dipole-dipole double-resonance in colloidal gold rod-cup nanocrystals for improved SERS and second-harmonic generation.
    Kang HS; Zhao WQ; Zhou T; Ma L; Yang DJ; Chen XB; Ding SJ; Wang QQ
    Nano Res; 2022; 15(10):9461-9469. PubMed ID: 35818567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence enhancement of molecules inside a gold nanomatryoshka.
    Ayala-Orozco C; Liu JG; Knight MW; Wang Y; Day JK; Nordlander P; Halas NJ
    Nano Lett; 2014 May; 14(5):2926-33. PubMed ID: 24738706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)-Ag(shell) nanospheres.
    Sugawa K; Akiyama T; Tanoue Y; Harumoto T; Yanagida S; Yasumori A; Tomita S; Otsuki J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21182-9. PubMed ID: 25558009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional Au@Ag@SiO
    Dong L; Liu B; Maenosono S; Yang J
    Langmuir; 2023 Jan; 39(4):1593-1599. PubMed ID: 36668988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance.
    Liu Y; Zhou J; Wang B; Jiang T; Ho HP; Petti L; Mormile P
    Phys Chem Chem Phys; 2015 Mar; 17(10):6819-26. PubMed ID: 25670345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt-mediated, plasmonic field-field/field-lattice coupling-enhanced NIR-II photodynamic therapy using core-gap-shell gold nanopeanuts.
    Kuthala N; Shanmugam M; Kong X; Chiang CS; Hwang KC
    Nanoscale Horiz; 2022 May; 7(6):589-606. PubMed ID: 35527504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The performance of surface enhanced Raman scattering and spatial resolution with triangular plate dimer from ultra-ultraviolet to near-infrared range.
    Wei Y; Pei H; Yan B; Zhu Y
    J Phys Condens Matter; 2021 Nov; 34(4):. PubMed ID: 34670211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications.
    Khlebtsov NG; Lin L; Khlebtsov BN; Ye J
    Theranostics; 2020; 10(5):2067-2094. PubMed ID: 32089735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO
    Yang Y; Zhu J; Zhao J; Weng GJ; Li JJ; Zhao JW
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3617-3626. PubMed ID: 30608142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic detection of Cd2+ ions using surface-enhanced Raman scattering active core-shell nanocomposite.
    Thatai S; Khurana P; Prasad S; Kumar D
    Talanta; 2015 Mar; 134():568-575. PubMed ID: 25618709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced Raman spectroscopy of double-shell hollow nanoparticles: electromagnetic and chemical enhancements.
    Mahmoud MA
    Langmuir; 2013 May; 29(21):6253-61. PubMed ID: 23647422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering.
    Lee H; Lee JH; Jin SM; Suh YD; Nam JM
    Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid nanostructure of SiO
    Yang H; Li BQ; Jiang X; Shao J
    Nanoscale; 2019 Jul; 11(28):13484-13493. PubMed ID: 31289802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer.
    Lin L; Zapata M; Xiong M; Liu Z; Wang S; Xu H; Borisov AG; Gu H; Nordlander P; Aizpurua J; Ye J
    Nano Lett; 2015 Oct; 15(10):6419-28. PubMed ID: 26375710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on surface enhanced Raman scattering of Au and Au@Al
    Yan BX; Zhu YY; Wei Y; Pei H
    Sci Rep; 2021 Apr; 11(1):8391. PubMed ID: 33864018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of SiO
    Song D; Wang T; Zhuang L
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.