These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 37948233)
1. ASAP-CORPS: A Semi-Autonomous Platform for COntact-Rich Precision Surgery. Balakuntala MV; Gonzalez GT; Wachs JP; Voyles RM Mil Med; 2023 Nov; 188(Suppl 6):412-419. PubMed ID: 37948233 [TBL] [Abstract][Full Text] [Related]
2. From the Dexterous Surgical Skill to the Battlefield-A Robotics Exploratory Study. Gonzalez GT; Kaur U; Rahman M; Venkatesh V; Sanchez N; Hager G; Xue Y; Voyles R; Wachs J Mil Med; 2021 Jan; 186(Suppl 1):288-294. PubMed ID: 33499518 [TBL] [Abstract][Full Text] [Related]
3. Motion generation of robotic surgical tasks: learning from expert demonstrations. Reiley CE; Plaku E; Hager GD Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():967-70. PubMed ID: 21096982 [TBL] [Abstract][Full Text] [Related]
4. Machine learning in the optimization of robotics in the operative field. Ma R; Vanstrum EB; Lee R; Chen J; Hung AJ Curr Opin Urol; 2020 Nov; 30(6):808-816. PubMed ID: 32925312 [TBL] [Abstract][Full Text] [Related]
5. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations. Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888 [TBL] [Abstract][Full Text] [Related]
6. Data-derived models for segmentation with application to surgical assessment and training. Varadarajan B; Reiley C; Lin H; Khudanpur S; Hager G Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):426-34. PubMed ID: 20426016 [TBL] [Abstract][Full Text] [Related]
7. Leveraging Expert Demonstration Features for Deep Reinforcement Learning in Floor Cleaning Robot Navigation. Cimurs R; Merchán-Cruz EA Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298101 [TBL] [Abstract][Full Text] [Related]
8. Human-robot skills transfer interfaces for a flexible surgical robot. Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285 [TBL] [Abstract][Full Text] [Related]
9. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Chaitanya K; Erdil E; Karani N; Konukoglu E Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649 [TBL] [Abstract][Full Text] [Related]
10. Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Lin HC; Shafran I; Yuh D; Hager GD Comput Aided Surg; 2006 Sep; 11(5):220-30. PubMed ID: 17127647 [TBL] [Abstract][Full Text] [Related]
12. Task-Oriented Deep Reinforcement Learning for Robotic Skill Acquisition and Control. Xiang G; Su J IEEE Trans Cybern; 2021 Feb; 51(2):1056-1069. PubMed ID: 31725408 [TBL] [Abstract][Full Text] [Related]
13. Learning-based control approaches for service robots on cloth manipulation and dressing assistance: a comprehensive review. Nocentini O; Kim J; Bashir ZM; Cavallo F J Neuroeng Rehabil; 2022 Nov; 19(1):117. PubMed ID: 36329473 [TBL] [Abstract][Full Text] [Related]
14. Variational Information Bottleneck Regularized Deep Reinforcement Learning for Efficient Robotic Skill Adaptation. Xiang G; Dian S; Du S; Lv Z Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679561 [TBL] [Abstract][Full Text] [Related]
15. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation. Enguehard J; O'Halloran P; Gholipour A IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387 [TBL] [Abstract][Full Text] [Related]
16. Autonomous navigation of catheters and guidewires in mechanical thrombectomy using inverse reinforcement learning. Robertshaw H; Karstensen L; Jackson B; Granados A; Booth TC Int J Comput Assist Radiol Surg; 2024 Aug; 19(8):1569-1578. PubMed ID: 38884893 [TBL] [Abstract][Full Text] [Related]