These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 37948373)
21. The Nomogram of MRI-based Radiomics with Complementary Visual Features by Machine Learning Improves Stratification of Glioblastoma Patients: A Multicenter Study. Xu Y; He X; Li Y; Pang P; Shu Z; Gong X J Magn Reson Imaging; 2021 Aug; 54(2):571-583. PubMed ID: 33559302 [TBL] [Abstract][Full Text] [Related]
22. Radiomic Analysis Reveals Prognostic Information in T1-Weighted Baseline Magnetic Resonance Imaging in Patients With Glioblastoma. Ingrisch M; Schneider MJ; Nörenberg D; Negrao de Figueiredo G; Maier-Hein K; Suchorska B; Schüller U; Albert N; Brückmann H; Reiser M; Tonn JC; Ertl-Wagner B Invest Radiol; 2017 Jun; 52(6):360-366. PubMed ID: 28079702 [TBL] [Abstract][Full Text] [Related]
23. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma. Lu Y; Patel M; Natarajan K; Ughratdar I; Sanghera P; Jena R; Watts C; Sawlani V Magn Reson Imaging; 2020 Dec; 74():161-170. PubMed ID: 32980505 [TBL] [Abstract][Full Text] [Related]
24. A radiomics-based model to differentiate glioblastoma from solitary brain metastases. Su CQ; Chen XT; Duan SF; Zhang JX; You YP; Lu SS; Hong XN Clin Radiol; 2021 Aug; 76(8):629.e11-629.e18. PubMed ID: 34092362 [TBL] [Abstract][Full Text] [Related]
25. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach. Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238 [TBL] [Abstract][Full Text] [Related]
26. MRI Features May Predict Molecular Features of Glioblastoma in Park CJ; Han K; Kim H; Ahn SS; Choi D; Park YW; Chang JH; Kim SH; Cha S; Lee SK AJNR Am J Neuroradiol; 2021 Mar; 42(3):448-456. PubMed ID: 33509914 [TBL] [Abstract][Full Text] [Related]
27. Radiomic Features on Multiparametric MRI for Preoperative Evaluation of Pituitary Macroadenomas Consistency: Preliminary Findings. Wan T; Wu C; Meng M; Liu T; Li C; Ma J; Qin Z J Magn Reson Imaging; 2022 May; 55(5):1491-1503. PubMed ID: 34549842 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Yang D; Rao G; Martinez J; Veeraraghavan A; Rao A Med Phys; 2015 Nov; 42(11):6725-35. PubMed ID: 26520762 [TBL] [Abstract][Full Text] [Related]
29. Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time. Liao X; Cai B; Tian B; Luo Y; Song W; Li Y J Cell Mol Med; 2019 Jun; 23(6):4375-4385. PubMed ID: 31001929 [TBL] [Abstract][Full Text] [Related]
30. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. Tang Y; Yang CM; Su S; Wang WJ; Fan LP; Shu J BMC Cancer; 2021 Nov; 21(1):1268. PubMed ID: 34819043 [TBL] [Abstract][Full Text] [Related]
31. Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation. Park YW; Choi D; Park JE; Ahn SS; Kim H; Chang JH; Kim SH; Kim HS; Lee SK Sci Rep; 2021 Feb; 11(1):2913. PubMed ID: 33536499 [TBL] [Abstract][Full Text] [Related]
32. Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in glioblastoma. Beig N; Singh S; Bera K; Prasanna P; Singh G; Chen J; Saeed Bamashmos A; Barnett A; Hunter K; Statsevych V; Hill VB; Varadan V; Madabhushi A; Ahluwalia MS; Tiwari P Neuro Oncol; 2021 Feb; 23(2):251-263. PubMed ID: 33068415 [TBL] [Abstract][Full Text] [Related]
33. Novel Radiomic Features Based on Joint Intensity Matrices for Predicting Glioblastoma Patient Survival Time. Chaddad A; Daniel P; Desrosiers C; Toews M; Abdulkarim B IEEE J Biomed Health Inform; 2019 Mar; 23(2):795-804. PubMed ID: 29993848 [TBL] [Abstract][Full Text] [Related]
34. Ensemble learning-based pretreatment MRI radiomic model for distinguishing intracranial extraventricular ependymoma from glioblastoma multiforme. He H; Long Q; Li L; Fu Y; Wang X; Qin Y; Jiang M; Tan Z; Yi X; Chen BT NMR Biomed; 2024 Aug; ():e5242. PubMed ID: 39164197 [TBL] [Abstract][Full Text] [Related]
35. [Application of MRI-based Radiomics Models in the Assessment of Hepatic Metastasis of Rectal Cancer]. Hu SX; Yang K; Wang XR; Wen DG; Xia CC; Li X; Li ZL Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 52(2):311-318. PubMed ID: 33829708 [TBL] [Abstract][Full Text] [Related]
36. Differentiating Glioblastoma Multiforme from Brain Metastases Using Multidimensional Radiomics Features Derived from MRI and Multiple Machine Learning Models. Bijari S; Jahanbakhshi A; Hajishafiezahramini P; Abdolmaleki P Biomed Res Int; 2022; 2022():2016006. PubMed ID: 36212721 [TBL] [Abstract][Full Text] [Related]
37. Multiregional radiomics profiling from multiparametric MRI: Identifying an imaging predictor of IDH1 mutation status in glioblastoma. Li ZC; Bai H; Sun Q; Zhao Y; Lv Y; Zhou J; Liang C; Chen Y; Liang D; Zheng H Cancer Med; 2018 Dec; 7(12):5999-6009. PubMed ID: 30426720 [TBL] [Abstract][Full Text] [Related]
38. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. Artzi M; Bressler I; Ben Bashat D J Magn Reson Imaging; 2019 Aug; 50(2):519-528. PubMed ID: 30635952 [TBL] [Abstract][Full Text] [Related]
39. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Korfiatis P; Kline TL; Coufalova L; Lachance DH; Parney IF; Carter RE; Buckner JC; Erickson BJ Med Phys; 2016 Jun; 43(6):2835-2844. PubMed ID: 27277032 [TBL] [Abstract][Full Text] [Related]
40. Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion-Weighted MR Imaging: An Externally Validated Machine Learning Algorithm. Guo Y; Ma Z; Pei D; Duan W; Guo Y; Liu Z; Guan F; Wang Z; Xing A; Guo Z; Luo L; Wang W; Yu B; Zhou J; Ji Y; Yan D; Cheng J; Liu X; Yan J; Zhang Z J Magn Reson Imaging; 2023 Oct; 58(4):1234-1242. PubMed ID: 36727433 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]