These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37948470)

  • 1. The gender and age differences in the passengers' thermal comfort during cooling and heating conditions in vehicles.
    Kwak J; Chun C; Park JS; Kim S; Seo S
    PLoS One; 2023; 18(11):e0294027. PubMed ID: 37948470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human thermal sensation and comfort in a non-uniform environment with personalized heating.
    Deng Q; Wang R; Li Y; Miao Y; Zhao J
    Sci Total Environ; 2017 Feb; 578():242-248. PubMed ID: 27265737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.
    Schellen L; Loomans MG; de Wit MH; Olesen BW; van Marken Lichtenbelt WD
    Physiol Behav; 2012 Sep; 107(2):252-61. PubMed ID: 22877870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of thermal comfort inside a bus during heating period within a climatic chamber.
    Pala U; Oz HR
    Appl Ergon; 2015 May; 48():164-76. PubMed ID: 25683544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gender differences in thermal sensation and skin temperature sensitivity under local cooling.
    Zhao Q; Lyu J; Du H; Lian Z; Zhao Z
    J Therm Biol; 2023 Jan; 111():103401. PubMed ID: 36585080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passenger thermal perceptions, thermal comfort requirements, and adaptations in short- and long-haul vehicles.
    Lin TP; Hwang RL; Huang KT; Sun CY; Huang YC
    Int J Biometeorol; 2010 May; 54(3):221-30. PubMed ID: 19851789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal sensation prediction model for high-speed train occupants based on skin temperatures and skin wettedness.
    Zhou W; Yang M; Peng Y; Xiao Q; Fan C; Xu D
    Int J Biometeorol; 2024 Feb; 68(2):289-304. PubMed ID: 38047941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gender differences in thermal responses to temperature ramps in moderate environments.
    Zhang S; Zhu N
    J Therm Biol; 2022 Jan; 103():103158. PubMed ID: 35027194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants' heating behavior.
    Katić K; Li R; Zeiler W
    Appl Ergon; 2020 May; 85():103078. PubMed ID: 32174366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The key local segments of human body for personalized heating and cooling.
    Wang L; Tian Y; Kim J; Yin H
    J Therm Biol; 2019 Apr; 81():118-127. PubMed ID: 30975408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal bus temperature for thermal comfort during a cool day.
    Velt KB; Daanen HAM
    Appl Ergon; 2017 Jul; 62():72-76. PubMed ID: 28411740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of thermal perceptions and physiological responses using torso heating under short-term cold exposure.
    Li S; Jia X; Cao B; Zhu Y
    Sci Total Environ; 2023 Sep; 892():164491. PubMed ID: 37245814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal comfort in environments with different vertical air temperature gradients.
    Möhlenkamp M; Schmidt M; Wesseling M; Wick A; Gores I; Müller D
    Indoor Air; 2019 Jan; 29(1):101-111. PubMed ID: 30339306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined comfort model of thermal comfort and air quality on buses in Hong Kong.
    Shek KW; Chan WT
    Sci Total Environ; 2008 Jan; 389(2-3):277-82. PubMed ID: 17949792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Main effects and interactions of multiple key factors related to thermal perception.
    Yang Y; Lyu J; Du H; Lian Z; Liu W; Duanmu L; Zhai Y; Cao B; Zhang Y; Zhou X; Wang Z; Zhang X; Wang F
    Sci Total Environ; 2024 Mar; 918():170683. PubMed ID: 38325465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation.
    Pao SL; Wu SY; Liang JM; Huang IJ; Guo LY; Wu WL; Liu YG; Nian SH
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental conditions driven method for automobile cabin pre-conditioning with multi-satisfaction objectives.
    Li W; Chen J; Lan F
    PLoS One; 2022; 17(5):e0266672. PubMed ID: 35604922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outdoor thermal comfort characteristics in the hot and humid region from a gender perspective.
    Tung CH; Chen CP; Tsai KT; Kántor N; Hwang RL; Matzarakis A; Lin TP
    Int J Biometeorol; 2014 Nov; 58(9):1927-39. PubMed ID: 24478000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overall thermal sensation and comfort prediction with different model combinations: Cold and hot step-change environments in winter.
    Hu S; Ma H; He M; Wang F; Zhao Y; Li Y
    J Therm Biol; 2023 Apr; 113():103458. PubMed ID: 37055100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of thermal transience on the perception of thermal comfort.
    Ciuha U; Tobita K; McDonnell AC; Mekjavic IB
    Physiol Behav; 2019 Oct; 210():112623. PubMed ID: 31325511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.