These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37948537)

  • 21. Replica-Exchange Enveloping Distribution Sampling: Calculation of Relative Free Energies in GROMOS.
    Rieder SR; Ries B; Champion C; Barros EP; Hünenberger PH; Riniker S
    Chimia (Aarau); 2022 Apr; 76(4):327-330. PubMed ID: 38069773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Workflow for Refining AlphaFold Models in Drug Design Using Kinetic and Thermodynamic Binding Calculations: A Case Study for the Unresolved Inactive Human Adenosine A
    Stampelou M; Ladds G; Kolocouris A
    J Phys Chem B; 2024 Feb; 128(4):914-936. PubMed ID: 38236582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large Scale Study of Ligand-Protein Relative Binding Free Energy Calculations: Actionable Predictions from Statistically Robust Protocols.
    Bhati AP; Coveney PV
    J Chem Theory Comput; 2022 Apr; 18(4):2687-2702. PubMed ID: 35293737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relative Binding Free Energy Calculations for Ligands with Diverse Scaffolds with the Alchemical Transfer Method.
    Azimi S; Khuttan S; Wu JZ; Pal RK; Gallicchio E
    J Chem Inf Model; 2022 Jan; 62(2):309-323. PubMed ID: 34990555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How to Sample Dozens of Substitutions per Site with λ Dynamics.
    Hayes RL; Cervantes LF; Abad Santos JC; Samadi A; Vilseck JZ; Brooks CL
    J Chem Theory Comput; 2024 Jul; 20(14):6098-6110. PubMed ID: 38976796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast free energy estimates from λ-dynamics with bias-updated Gibbs sampling.
    Robo MT; Hayes RL; Ding X; Pulawski B; Vilseck JZ
    Nat Commun; 2023 Dec; 14(1):8515. PubMed ID: 38129400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
    Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L
    J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ligand Binding Affinity Prediction for Membrane Proteins with Alchemical Free Energy Calculation Methods.
    Zhang H; Im W
    J Chem Inf Model; 2024 Jul; 64(14):5671-5679. PubMed ID: 38959405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Method for Treating Significant Conformational Changes in Alchemical Free Energy Simulations of Protein-Ligand Binding.
    Liao J; Sergeeva AP; Harder ED; Wang L; Sampson JM; Honig B; Friesner RA
    J Chem Theory Comput; 2024 Oct; 20(19):8609-8623. PubMed ID: 39331379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leveraging the sampling efficiency of RE-EDS in OpenMM using a shifted reaction-field with an atom-based cutoff.
    Rieder SR; Ries B; Kubincová A; Champion C; Barros EP; Hünenberger PH; Riniker S
    J Chem Phys; 2022 Sep; 157(10):104117. PubMed ID: 36109239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the Effect of Enhanced Sampling on Protein Stability Prediction.
    Markthaler D; Fleck M; Stankiewicz B; Hansen N
    J Chem Theory Comput; 2022 Apr; 18(4):2569-2583. PubMed ID: 35298174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Can Free Energy Perturbation Simulations Coupled with Replica-Exchange Molecular Dynamics Study Ligands with Distributed Binding Sites?
    Lockhart C; Luo X; Olson A; Delfing BM; Laracuente XE; Foreman KW; Paige M; Kehn-Hall K; Klimov DK
    J Chem Inf Model; 2023 Aug; 63(15):4791-4802. PubMed ID: 37531558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. To Design Scalable Free Energy Perturbation Networks, Optimal Is Not Enough.
    Pitman M; Hahn DF; Tresadern G; Mobley DL
    J Chem Inf Model; 2023 Mar; 63(6):1776-1793. PubMed ID: 36878475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uncertainty Quantification in Alchemical Free Energy Methods.
    Bhati AP; Wan S; Hu Y; Sherborne B; Coveney PV
    J Chem Theory Comput; 2018 Jun; 14(6):2867-2880. PubMed ID: 29678106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvements in Precision of Relative Binding Free Energy Calculations Afforded by the Alchemical Enhanced Sampling (ACES) Approach.
    Tsai HC; Xu J; Guo Z; Yi Y; Tian C; Que X; Giese T; Lee TS; York DM; Ganguly A; Pan A
    J Chem Inf Model; 2024 Sep; 64(18):7046-7055. PubMed ID: 39225694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs.
    Harger M; Li D; Wang Z; Dalby K; Lagardère L; Piquemal JP; Ponder J; Ren P
    J Comput Chem; 2017 Sep; 38(23):2047-2055. PubMed ID: 28600826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gibbs Sampler-Based λ-Dynamics and Rao-Blackwell Estimator for Alchemical Free Energy Calculation.
    Ding X; Vilseck JZ; Hayes RL; Brooks CL
    J Chem Theory Comput; 2017 Jun; 13(6):2501-2510. PubMed ID: 28510433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications.
    Reif MM; Zacharias M
    J Chem Theory Comput; 2022 Jun; 18(6):3873-3893. PubMed ID: 35653503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Addressing Suboptimal Poses in Nonequilibrium Alchemical Calculations.
    Karrenbrock M; Rizzi V; Procacci P; Gervasio FL
    J Phys Chem B; 2024 Feb; 128(7):1595-1605. PubMed ID: 38323915
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations.
    Wang B; Li L; Hurley TD; Meroueh SO
    J Chem Inf Model; 2013 Oct; 53(10):2659-70. PubMed ID: 24032517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.