BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37948966)

  • 1. ConPep: Prediction of peptide contact maps with pre-trained biological language model and multi-view feature extracting strategy.
    Wei Q; Wang R; Jiang Y; Wei L; Sun Y; Geng J; Su R
    Comput Biol Med; 2023 Dec; 167():107631. PubMed ID: 37948966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PSSP-MVIRT: peptide secondary structure prediction based on a multi-view deep learning architecture.
    Cao X; He W; Chen Z; Li Y; Wang K; Zhang H; Wei L; Cui L; Su R; Wei L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34117740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MFTrans: A multi-feature transformer network for protein secondary structure prediction.
    Chen Y; Chen G; Chen CY
    Int J Biol Macromol; 2024 May; 267(Pt 1):131311. PubMed ID: 38599417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating unsupervised language model with multi-view multiple sequence alignments for high-accuracy inter-chain contact prediction.
    Liu Z; Zhu YH; Shen LC; Xiao X; Qiu WR; Yu DJ
    Comput Biol Med; 2023 Nov; 166():107529. PubMed ID: 37748220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks.
    Walsh I; BaĆ¹ D; Martin AJ; Mooney C; Vullo A; Pollastri G
    BMC Struct Biol; 2009 Jan; 9():5. PubMed ID: 19183478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of protein-ATP binding residues using multi-view feature learning via contextual-based co-attention network.
    Wu JS; Liu Y; Ge F; Yu DJ
    Comput Biol Med; 2024 Apr; 172():108227. PubMed ID: 38460308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AFP-MFL: accurate identification of antifungal peptides using multi-view feature learning.
    Fang Y; Xu F; Wei L; Jiang Y; Chen J; Wei L; Wei DQ
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved structure-related prediction for insufficient homologous proteins using MSA enhancement and pre-trained language model.
    Meng Q; Guo F; Tang J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37321965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeprotmap: waiting-free prediction method for protein distance map.
    Huang J; Li J; Chen Q; Wang X; Chen G; Tang J
    BMC Bioinformatics; 2024 May; 25(1):176. PubMed ID: 38704533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs.
    Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved protein relative solvent accessibility prediction using deep multi-view feature learning framework.
    Fan XQ; Hu J; Jia NX; Yu DJ; Zhang GJ
    Anal Biochem; 2021 Oct; 631():114358. PubMed ID: 34478704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. rawMSA: End-to-end Deep Learning using raw Multiple Sequence Alignments.
    Mirabello C; Wallner B
    PLoS One; 2019; 14(8):e0220182. PubMed ID: 31415569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ensembling multiple raw coevolutionary features with deep residual neural networks for contact-map prediction in CASP13.
    Li Y; Zhang C; Bell EW; Yu DJ; Zhang Y
    Proteins; 2019 Dec; 87(12):1082-1091. PubMed ID: 31407406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TLCrys: Transfer Learning Based Method for Protein Crystallization Prediction.
    Jin C; Shi Z; Kang C; Lin K; Zhang H
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Inter-Helix Contact Prediction With Local 2D Topological Information.
    Li J; Sawhney A; Lee JY; Liao L
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3001-3012. PubMed ID: 37155404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pairing interacting protein sequences using masked language modeling.
    Lupo U; Sgarbossa D; Bitbol AF
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311887121. PubMed ID: 38913900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two-stage approach for improved prediction of residue contact maps.
    Vullo A; Walsh I; Pollastri G
    BMC Bioinformatics; 2006 Mar; 7():180. PubMed ID: 16573808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.