BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37948968)

  • 1. Microwave ablation modeling with AMICA antenna: Validation by means a numerical analysis.
    Cafarchio A; Iasiello M; Vanoli GP; Andreozzi A
    Comput Biol Med; 2023 Dec; 167():107669. PubMed ID: 37948968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modeling of microwave liver ablation with a variable-porosity medium approach.
    Tucci C; Trujillo M; Berjano E; Iasiello M; Andreozzi A; Vanoli GP
    Comput Methods Programs Biomed; 2022 Feb; 214():106569. PubMed ID: 34906785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of the Emprint and Amica Microwave Ablation Systems in ex vivo Porcine Livers: Sphericity and Reproducibility Versus Size.
    Hendriks P; Berkhout WEM; Kaanen CI; Sluijter JH; Visser IJ; van den Dobbelsteen JJ; de Geus-Oei LF; Webb AG; Burgmans MC
    Cardiovasc Intervent Radiol; 2021 Jun; 44(6):952-958. PubMed ID: 33462682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of in vivo ablation zones following percutaneous microwave ablation of the liver with two commercially available devices: are manufacturer published reference values useful?
    Winokur RS; Du JY; Pua BB; Talenfeld AD; Sista AK; Schiffman MA; Trost DW; Madoff DC
    J Vasc Interv Radiol; 2014 Dec; 25(12):1939-1946.e1. PubMed ID: 25307296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave ablation of ex vivo bovine tissues using a dual slot antenna with a floating metallic sleeve.
    Ibitoye AZ; Nwoye EO; Aweda AM; Oremosu AA; Anunobi CC; Akanmu NO
    Int J Hyperthermia; 2016 Dec; 32(8):923-930. PubMed ID: 27431435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short pulsed microwave ablation: computer modeling and
    Radosevic A; Prieto D; Burdío F; Berjano E; Prakash P; Trujillo M
    Int J Hyperthermia; 2021; 38(1):409-420. PubMed ID: 33719808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave ablation of the lung: Comparison of 19G with 14G and 16G microwave antennas in
    Cai H; Tian H; Wei Z; Ye X
    J Cancer Res Ther; 2022 Dec; 18(7):1876-1883. PubMed ID: 36647945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of microwave ablation incorporating tissue contraction based on thermal dose.
    Liu D; Brace CL
    Phys Med Biol; 2017 Mar; 62(6):2070-2086. PubMed ID: 28151729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direction of Tissue Contraction after Microwave Ablation: A Comparative Experimental Study in
    Lee J; Rhim H; Lee MW; Kang TW; Song KD; Lee JK
    Korean J Radiol; 2022 Jan; 23(1):42-51. PubMed ID: 34983092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.
    Luyen H; Gao F; Hagness SC; Behdad N
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1702-10. PubMed ID: 24845280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the target tissue size on the shape of ex vivo microwave ablation zones.
    Cavagnaro M; Amabile C; Cassarino S; Tosoratti N; Pinto R; Lopresto V
    Int J Hyperthermia; 2015 Feb; 31(1):48-57. PubMed ID: 25677838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of microwave ablation parameters on the positioning of trocar in different cancerous tissues: a numerical study.
    Satish V; Repaka R
    Electromagn Biol Med; 2024 Apr; 43(1-2):125-134. PubMed ID: 38533761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave ablation: Results with three different diameters of antennas in
    Song Z; Qi H; Zhang H; Xie L; Cao F; Fan W; Wan C
    J Cancer Res Ther; 2017; 13(5):737-741. PubMed ID: 29237896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and simulation of novel antenna for the treatment of hepatocellular carcinoma using finite element method.
    Maini S; Marwaha A
    Electromagn Biol Med; 2013 Sep; 32(3):373-81. PubMed ID: 23324105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz.
    Lopresto V; Pinto R; Lovisolo GA; Cavagnaro M
    Phys Med Biol; 2012 Apr; 57(8):2309-27. PubMed ID: 22460062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety and efficacy of intracavitary microwave ablation in hepatic gland tumours: Numerical and in vitro studies.
    Satish V; Repaka R
    Proc Inst Mech Eng H; 2023 Jul; 237(7):905-915. PubMed ID: 37300398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time qualitative MR monitoring of microwave ablation in ex vivo livers.
    Kaltenbach B; Roman A; Eichler K; Nour-Eldin NE; Vogl TJ; Zangos S
    Int J Hyperthermia; 2016 Nov; 32(7):757-64. PubMed ID: 27436220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation.
    Curto S; Taj-Eldin M; Fairchild D; Prakash P
    Med Phys; 2015 Nov; 42(11):6152-61. PubMed ID: 26520708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of blood flow parameters on temperature distribution during liver tumor microwave ablation.
    Wang J; Wu S; Wu Z; Gao H; Huang S
    Front Biosci (Landmark Ed); 2021 Sep; 26(9):504-516. PubMed ID: 34590463
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.