BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37949256)

  • 21. A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes.
    Wei Q; Liu Y; Gao X; Wang Y; Yang C; Lu Z; Gong H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1178-1187. PubMed ID: 29877842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials.
    Waytowich N; Lawhern VJ; Garcia JO; Cummings J; Faller J; Sajda P; Vettel JM
    J Neural Eng; 2018 Dec; 15(6):066031. PubMed ID: 30279309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs.
    Ming G; Pei W; Chen H; Gao X; Wang Y
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34544060
    [No Abstract]   [Full Text] [Related]  

  • 24. Influence of spatial frequency in visual stimuli for cVEP-based BCIs: evaluation of performance and user experience.
    Fernández-Rodríguez Á; Martínez-Cagigal V; Santamaría-Vázquez E; Ron-Angevin R; Hornero R
    Front Hum Neurosci; 2023; 17():1288438. PubMed ID: 38021231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative study of pseudorandom sequences used in a c-VEP based BCI for online wheelchair control.
    Isaksen J; Mohebbi A; Puthusserypady S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1512-1515. PubMed ID: 28324945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new grid stimulus with subtle flicker perception for user-friendly SSVEP-based BCIs.
    Ming G; Zhong H; Pei W; Gao X; Wang Y
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36827704
    [No Abstract]   [Full Text] [Related]  

  • 27. Comparing user-dependent and user-independent training of CNN for SSVEP BCI.
    Ravi A; Beni NH; Manuel J; Jiang N
    J Neural Eng; 2020 Apr; 17(2):026028. PubMed ID: 31923910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal pseudorandom sequence selection for online c-VEP based BCI control applications.
    Isaksen JL; Mohebbi A; Puthusserypady S
    PLoS One; 2017; 12(9):e0184785. PubMed ID: 28902895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study.
    Kapeller C; Kamada K; Ogawa H; Prueckl R; Scharinger J; Guger C
    Front Syst Neurosci; 2014; 8():139. PubMed ID: 25147509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonparametric Early Stopping Detection for c-VEP-based Brain-Computer Interfaces: A Pilot Study.
    Martinez-Cagigal V; Santamaria-Vazquez E; Perez-Velasco S; Marcos-Martinez D; Moreno-Calderon S; Hornero R
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Brain-Computer Interface Based on Miniature-Event-Related Potentials Induced by Very Small Lateral Visual Stimuli.
    Xu M; Xiao X; Wang Y; Qi H; Jung TP; Ming D
    IEEE Trans Biomed Eng; 2018 May; 65(5):1166-1175. PubMed ID: 29683431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of higher frequency on the classification of steady-state visual evoked potentials.
    Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW
    J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Riemannian geometry-based transfer learning for reducing training time in c-VEP BCIs.
    Ying J; Wei Q; Zhou X
    Sci Rep; 2022 Jun; 12(1):9818. PubMed ID: 35701505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SSVEP-assisted RSVP brain-computer interface paradigm for multi-target classification.
    Ko LW; Sandeep Vara Sankar D; Huang Y; Lu YC; Shaw S; Jung TP
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33291083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ensemble or pool: A comprehensive study on transfer learning for c-VEP BCI during interpersonal interaction.
    Huang Z; Zheng W; Wu Y; Wang Y
    J Neurosci Methods; 2020 Sep; 343():108855. PubMed ID: 32645409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP-BCI in augmented reality.
    Zhang R; Xu Z; Zhang L; Cao L; Hu Y; Lu B; Shi L; Yao D; Zhao X
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35477130
    [No Abstract]   [Full Text] [Related]  

  • 37. A high-speed BCI based on code modulation VEP.
    Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S
    J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Five Shades of Grey: Exploring Quintary
    Gembler FW; Rezeika A; Benda M; Volosyak I
    Comput Intell Neurosci; 2020; 2020():7985010. PubMed ID: 32256553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort.
    Choi KM; Park S; Im CH
    Comput Intell Neurosci; 2019; 2019():9680697. PubMed ID: 31354804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.
    Spüler M; Rosenstiel W; Bogdan M
    PLoS One; 2012; 7(12):e51077. PubMed ID: 23236433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.