BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37949293)

  • 1. Abnormal expression of sphingolipid-metabolizing enzymes in the heart of spontaneously hypertensive rat models.
    Pepe G; Cotugno M; Marracino F; Capocci L; Pizzati L; Forte M; Stanzione R; Scarselli P; Di Pardo A; Sciarretta S; Volpe M; Rubattu S; Maglione V
    Biochim Biophys Acta Mol Cell Biol Lipids; 2024 Jan; 1869(1):159411. PubMed ID: 37949293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential Expression of Sphingolipid Metabolizing Enzymes in Spontaneously Hypertensive Rats: A Possible Substrate for Susceptibility to Brain and Kidney Damage.
    Pepe G; Cotugno M; Marracino F; Giova S; Capocci L; Forte M; Stanzione R; Bianchi F; Marchitti S; Di Pardo A; Sciarretta S; Rubattu S; Maglione V
    Int J Mol Sci; 2021 Apr; 22(7):. PubMed ID: 33917593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiopulmonary responses of Wistar Kyoto, spontaneously hypertensive, and stroke-prone spontaneously hypertensive rats to particulate matter (PM) exposure.
    Wallenborn JG; Schladweiler MC; Nyska A; Johnson JA; Thomas R; Jaskot RH; Richards JH; Ledbetter AD; Kodavanti UP
    J Toxicol Environ Health A; 2007 Nov; 70(22):1912-22. PubMed ID: 17966062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats.
    Dunn KM; Renic M; Flasch AK; Harder DR; Falck J; Roman RJ
    Am J Physiol Heart Circ Physiol; 2008 Dec; 295(6):H2455-65. PubMed ID: 18952718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stroke-prone spontaneously hypertensive rats have reduced hydroxysteroid 17-β dehydrogenase 7 levels for low cholesterol biosynthesis.
    Matsuoka H; Uchino Y; Choshi M; Nakamura T; Michihara A
    Clin Exp Pharmacol Physiol; 2020 Feb; 47(2):255-262. PubMed ID: 31587341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide.
    Spijkers LJ; van den Akker RF; Janssen BJ; Debets JJ; De Mey JG; Stroes ES; van den Born BJ; Wijesinghe DS; Chalfant CE; MacAleese L; Eijkel GB; Heeren RM; Alewijnse AE; Peters SL
    PLoS One; 2011; 6(7):e21817. PubMed ID: 21818267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological studies of alcohol susceptibility and brain monoamine function in stroke-prone spontaneously hypertensive rats (SHRSP) and stroke-resistant spontaneously hypertensive rats (SHRSR).
    Yoshimoto K; Komura S; Hattori H; Yamori Y; Miura A; Yoshida T; Hioki C; Kato B; Fukuda F; Tanaka S; Hirai A; Nishimura A; Sawai Y; Yasuhara M
    Tohoku J Exp Med; 2003 Sep; 201(1):11-22. PubMed ID: 14609256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential modulation of AMPK/PPARα/UCP2 axis in relation to hypertension and aging in the brain, kidneys and heart of two closely related spontaneously hypertensive rat strains.
    Rubattu S; Bianchi F; Busceti CL; Cotugno M; Stanzione R; Marchitti S; Di Castro S; Madonna M; Nicoletti F; Volpe M
    Oncotarget; 2015 Aug; 6(22):18800-18. PubMed ID: 26023797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A differential expression of uncoupling protein-2 associates with renal damage in stroke-resistant spontaneously hypertensive rat/stroke-prone spontaneously hypertensive rat-derived stroke congenic lines.
    Rubattu S; Cotugno M; Bianchi F; Sironi L; Gelosa P; Stanzione R; Forte M; De Sanctis C; Madonna M; Marchitti S; Pignieri A; Sciarretta S; Volpe M
    J Hypertens; 2017 Sep; 35(9):1857-1871. PubMed ID: 28399045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urinary excretion of 19-noraldosterone in the spontaneously hypertensive rat and stroke-prone spontaneously hypertensive rat.
    Takeda Y; Miyamori I; Yoneda T; Hurukawa K; Inaba S; Ito Y; Takeda R
    Clin Exp Pharmacol Physiol Suppl; 1995 Dec; 22(1):S20-2. PubMed ID: 9072356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of the Y chromosome influences intrarenal vascular responsiveness to angiotensin I and angiotensin (1-7) in stroke-prone spontaneously hypertensive rats.
    Sampson AK; Andrews KL; Graham D; McBride MW; Head GA; Thomas MC; Chin-Dusting JP; Dominiczak AF; Jennings GL
    Hypertension; 2014 Dec; 64(6):1376-83. PubMed ID: 25201895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginine vasopressin altered the expression of monocarboxylate transporters in cultured astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats.
    Yamagata K; Takahashi N; Akita N; Nabika T
    J Neuroinflammation; 2017 Sep; 14(1):176. PubMed ID: 28865453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: gene expression profiles in the brain.
    Yoshida M; Watanabe Y; Yamanishi K; Yamashita A; Yamamoto H; Okuzaki D; Shimada K; Nojima H; Yasunaga T; Okamura H; Matsunaga H; Yamanishi H
    Int J Mol Med; 2014 Apr; 33(4):887-96. PubMed ID: 24452243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of hereditarily accelerated proliferation in astrocytes derived from spontaneously hypertensive rats.
    Yamagata K; Nara Y; Tagami M; Yamori Y
    Clin Exp Pharmacol Physiol; 1995 Sep; 22(9):605-9. PubMed ID: 8542670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective trophoblast invasion underlies fetal growth restriction and preeclampsia-like symptoms in the stroke-prone spontaneously hypertensive rat.
    Barrientos G; Pussetto M; Rose M; Staff AC; Blois SM; Toblli JE
    Mol Hum Reprod; 2017 Jul; 23(7):509-519. PubMed ID: 28402512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New establishment of hypertensive diabetic animal models: neonatally streptozotocin-treated spontaneously hypertensive rats.
    Sato T; Nara Y; Note S; Yamori Y
    Metabolism; 1987 Aug; 36(8):731-7. PubMed ID: 3600285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach to identifying hypertension-associated genes in the mesenteric artery of spontaneously hypertensive rats and stroke-prone spontaneously hypertensive rats.
    Ikawa T; Watanabe Y; Okuzaki D; Goto N; Okamura N; Yamanishi K; Higashino T; Yamanishi H; Okamura H; Higashino H
    J Hypertens; 2019 Aug; 37(8):1644-1656. PubMed ID: 30882592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introgressed chromosome 2 quantitative trait loci restores aldosterone regulation and reduces response to salt in the stroke-prone spontaneously hypertensive rat.
    Sampson AK; Mohammed D; Beattie W; Graham D; Kenyon CJ; Al-Dujaili EA; Guryev V; Mcbride MW; Dominiczak AF
    J Hypertens; 2014 Oct; 32(10):2013-21; discussion 2021. PubMed ID: 25084306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower Squalene Epoxidase and Higher Scavenger Receptor Class B Type 1 Protein Levels Are Involved in Reduced Serum Cholesterol Levels in Stroke-Prone Spontaneously Hypertensive Rats.
    Michihara A; Mido M; Matsuoka H; Mizutani Y
    Biol Pharm Bull; 2015; 38(12):1879-90. PubMed ID: 26632180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between cardiovascular hypertrophy and cardiac baroreflex function in spontaneously hypertensive and stroke-prone rats.
    Minami N; Head GA
    J Hypertens; 1993 May; 11(5):523-33. PubMed ID: 8390524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.