BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37949656)

  • 1. Muscle Spasms after Spinal Cord Injury Stem from Changes in Motoneuron Excitability and Synaptic Inhibition, Not Synaptic Excitation.
    Mahrous A; Birch D; Heckman CJ; Tysseling V
    J Neurosci; 2024 Jan; 44(1):. PubMed ID: 37949656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in sensory-evoked synaptic activation of motoneurons after spinal cord injury in man.
    Norton JA; Bennett DJ; Knash ME; Murray KC; Gorassini MA
    Brain; 2008 Jun; 131(Pt 6):1478-91. PubMed ID: 18344559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adrenergic receptors modulate motoneuron excitability, sensory synaptic transmission and muscle spasms after chronic spinal cord injury.
    Rank MM; Murray KC; Stephens MJ; D'Amico J; Gorassini MA; Bennett DJ
    J Neurophysiol; 2011 Jan; 105(1):410-22. PubMed ID: 21047936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of baclofen on spinal reflexes and persistent inward currents in motoneurons of chronic spinal rats with spasticity.
    Li Y; Li X; Harvey PJ; Bennett DJ
    J Neurophysiol; 2004 Nov; 92(5):2694-703. PubMed ID: 15486423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of motoneurons in the generation of muscle spasms after spinal cord injury.
    Gorassini MA; Knash ME; Harvey PJ; Bennett DJ; Yang JF
    Brain; 2004 Oct; 127(Pt 10):2247-58. PubMed ID: 15342360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Involvement of Ca
    Jiang MC; Birch DV; Heckman CJ; Tysseling VM
    Front Neural Circuits; 2021; 15():642111. PubMed ID: 33867945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motoneuron excitability and muscle spasms are regulated by 5-HT2B and 5-HT2C receptor activity.
    Murray KC; Stephens MJ; Ballou EW; Heckman CJ; Bennett DJ
    J Neurophysiol; 2011 Feb; 105(2):731-48. PubMed ID: 20980537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bursting interneurons in the deep dorsal horn develop increased excitability and sensitivity to serotonin after chronic spinal injury.
    Thaweerattanasinp T; Birch D; Jiang MC; Tresch MC; Bennett DJ; Heckman CJ; Tysseling VM
    J Neurophysiol; 2020 May; 123(5):1657-1670. PubMed ID: 32208883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent inward currents in spinal motoneurons: important for normal function but potentially harmful after spinal cord injury and in amyotrophic lateral sclerosis.
    ElBasiouny SM; Schuster JE; Heckman CJ
    Clin Neurophysiol; 2010 Oct; 121(10):1669-79. PubMed ID: 20462789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locomotor-related V3 interneurons initiate and coordinate muscles spasms after spinal cord injury.
    Lin S; Li Y; Lucas-Osma AM; Hari K; Stephens MJ; Singla R; Heckman CJ; Zhang Y; Fouad K; Fenrich KK; Bennett DJ
    J Neurophysiol; 2019 Apr; 121(4):1352-1367. PubMed ID: 30625014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity.
    D'Amico JM; Condliffe EG; Martins KJ; Bennett DJ; Gorassini MA
    Front Integr Neurosci; 2014; 8():36. PubMed ID: 24860447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic Connectivity between Renshaw Cells and Motoneurons in the Recurrent Inhibitory Circuit of the Spinal Cord.
    Moore NJ; Bhumbra GS; Foster JD; Beato M
    J Neurosci; 2015 Oct; 35(40):13673-86. PubMed ID: 26446220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in motoneuron excitability during voluntary muscle activity in humans with spinal cord injury.
    Vastano R; Perez MA
    J Neurophysiol; 2020 Feb; 123(2):454-461. PubMed ID: 31461361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
    Bennett DJ; Sanelli L; Cooke CL; Harvey PJ; Gorassini MA
    J Neurophysiol; 2004 May; 91(5):2247-58. PubMed ID: 15069102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive activity of 5-HT
    Tysseling VM; Klein DA; Imhoff-Manuel R; Manuel M; Heckman CJ; Tresch MC
    J Neurophysiol; 2017 Nov; 118(5):2944-2952. PubMed ID: 28877964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increases in human motoneuron excitability after cervical spinal cord injury depend on the level of injury.
    Thomas CK; Häger CK; Klein CS
    J Neurophysiol; 2017 Feb; 117(2):684-691. PubMed ID: 27852734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal correlation of spinal network dynamics underlying spasms in chronic spinalized mice.
    Bellardita C; Caggiano V; Leiras R; Caldeira V; Fuchs A; Bouvier J; Löw P; Kiehn O
    Elife; 2017 Feb; 6():. PubMed ID: 28191872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal inhibition and motor function in adults with spastic cerebral palsy.
    Condliffe EG; Jeffery DT; Emery DJ; Gorassini MA
    J Physiol; 2016 May; 594(10):2691-705. PubMed ID: 26842905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of inhibitory strength and kinetics facilitates regulation of persistent inward currents and motoneuron excitability following spinal cord injury.
    Venugopal S; Hamm TM; Crook SM; Jung R
    J Neurophysiol; 2011 Nov; 106(5):2167-79. PubMed ID: 21775715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutively active 5-HT2/α1 receptors facilitate muscle spasms after human spinal cord injury.
    D'Amico JM; Murray KC; Li Y; Chan KM; Finlay MG; Bennett DJ; Gorassini MA
    J Neurophysiol; 2013 Mar; 109(6):1473-84. PubMed ID: 23221402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.