These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37949813)

  • 1. Organic Molecular Intercalation Enabled Anionic Redox Chemistry with Fast Kinetics for High Performance Magnesium Storage.
    Deng R; Wang Z; Tan S; Lu G; Huang X; Qu B; Huang G; Xu C; Zhou X; Wang J; Pan F
    Small; 2024 Mar; 20(12):e2308329. PubMed ID: 37949813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative Cationic and Anionic Redox Reactions in Ultrathin Polyvalent Metal Selenide Nanoribbons for High-Performance Electrochemical Magnesium-Ion Storage.
    Xue X; Song X; Yan W; Jiang M; Li F; Zhang XL; Tie Z; Jin Z
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48734-48742. PubMed ID: 36273323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlayer-Spacing-Regulated VOPO
    Zhou L; Liu Q; Zhang Z; Zhang K; Xiong F; Tan S; An Q; Kang YM; Zhou Z; Mai L
    Adv Mater; 2018 Aug; 30(32):e1801984. PubMed ID: 29939435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Electron Reactions Enabled by Anion-Based Redox Chemistry for High-Energy Multivalent Rechargeable Batteries.
    Li Z; Vinayan BP; Jankowski P; Njel C; Roy A; Vegge T; Maibach J; Lastra JMG; Fichtner M; Zhao-Karger Z
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11483-11490. PubMed ID: 32220137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergy Strategy of Electrical Conductivity Enhancement and Vacancy Introduction for Improving the Performance of VS
    Ding S; Dai X; Tian Y; Song G; Li Z; Meng A; Wang L; Li G; Wang W; Huang J; Li S
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54005-54017. PubMed ID: 34739752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries.
    Shen Y; Wang Y; Miao Y; Yang M; Zhao X; Shen X
    Adv Mater; 2020 Jan; 32(4):e1905524. PubMed ID: 31814193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pillar-Structured Ti
    Raisi B; Liu X; Rahmatinejad J; Ye Z
    Small Methods; 2024 Feb; ():e2400004. PubMed ID: 38327158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interchain-Expanded Vanadium Tetrasulfide with Fast Kinetics for Rechargeable Magnesium Batteries.
    Pei C; Yin Y; Sun R; Xiong F; Liao X; Tang H; Tan S; Zhao Y; An Q; Mai L
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31954-31961. PubMed ID: 31389681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible Electrochemical Anionic Redox in Rechargeable Multivalent-Ion Batteries.
    Jadhav AL; Juran TR; Kim MA; Bruck AM; Hawkins BE; Gallaway JW; Smeu M; Messinger RJ
    J Am Chem Soc; 2023 Jul; 145(29):15816-15826. PubMed ID: 37441772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials.
    Li Z; Mu X; Zhao-Karger Z; Diemant T; Behm RJ; Kübel C; Fichtner M
    Nat Commun; 2018 Nov; 9(1):5115. PubMed ID: 30504910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-Pillared Sodium Vanadium Bronze Nanowires for Enhanced Rechargeable Magnesium Ion Storage.
    Sun R; Ji X; Luo C; Hou S; Hu P; Pu X; Cao L; Mai L; Wang C
    Small; 2020 Jul; 16(30):e2000741. PubMed ID: 32578349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Branched VS
    Wang Y; Liu Z; Wang C; Yi X; Chen R; Ma L; Hu Y; Zhu G; Chen T; Tie Z; Ma J; Liu J; Jin Z
    Adv Mater; 2018 Aug; 30(32):e1802563. PubMed ID: 29939428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications.
    Yuan S; Huang X; Kong T; Yan L; Wang Y
    Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalyzing Desolvation at Cathode-Electrolyte Interface Enabling High-Performance Magnesium-Ion Batteries.
    Deng R; Lu G; Wang Z; Tan S; Huang X; Li R; Li M; Wang R; Xu C; Huang G; Wang J; Zhou X; Pan F
    Small; 2024 Feb; ():e2311587. PubMed ID: 38385836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anionic Te-Substitution Boosting the Reversible Redox in CuS Nanosheet Cathodes for Magnesium Storage.
    Cao Y; Zhu Y; Du C; Yang X; Xia T; Ma X; Cao C
    ACS Nano; 2022 Jan; 16(1):1578-1588. PubMed ID: 35023721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design Strategies of Spinel Oxide Frameworks Enabling Reversible Mg-Ion Intercalation.
    Kwon BJ; Lapidus SH; Vaughey JT; Ceder G; Cabana J; Key B
    Acc Chem Res; 2024 Jan; 57(1):1-9. PubMed ID: 38113116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-Activated VOPO
    Ji X; Chen J; Wang F; Sun W; Ruan Y; Miao L; Jiang J; Wang C
    Nano Lett; 2018 Oct; 18(10):6441-6448. PubMed ID: 30192559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anion-Incorporated Mg-Ion Solvation Modulation Enables Fast Magnesium Storage Kinetics of Conversion-Type Cathode Materials.
    Shen Y; Wang Y; Miao Y; Li Q; Zhao X; Shen X
    Adv Mater; 2023 May; 35(19):e2208289. PubMed ID: 36893768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Jointly Improving Anionic-Cationic Redox Reversibility of Lithium-Rich Manganese-Based Cathode Materials by N Surface Doping.
    Liu X; Zhang Q; Ji J; Lian F
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39023357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mo-Pre-Intercalated MnO
    Wang Z; Han K; Wan Q; Fang Y; Qu X; Li P
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):859-869. PubMed ID: 36579427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.