These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37949868)

  • 1. Night-time radiative warming using the atmosphere.
    Zhu Y; Zhou Y; Qin B; Qin R; Qiu M; Li Q
    Light Sci Appl; 2023 Nov; 12(1):268. PubMed ID: 37949868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Color-preserving passive radiative cooling for an actively temperature-regulated enclosure.
    Zhu Y; Luo H; Yang C; Qin B; Ghosh P; Kaur S; Shen W; Qiu M; Belov P; Li Q
    Light Sci Appl; 2022 May; 11(1):122. PubMed ID: 35508472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ordered-Porous-Array Polymethyl Methacrylate Films for Radiative Cooling.
    Qi G; Tan X; Tu Y; Yang X; Qiao Y; Wang Y; Geng J; Yao S; Chen X
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31277-31284. PubMed ID: 35771521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic trapezoidal VO
    Zhang WW; Qi H; Sun AT; Ren YT; Shi JW
    Opt Express; 2020 Jul; 28(14):20609-20623. PubMed ID: 32680117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Solar-Reflective Structures for Daytime Radiative Cooling under High Humidity.
    Zhong H; Zhang P; Li Y; Yang X; Zhao Y; Wang Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51409-51417. PubMed ID: 33147941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-transition materials derived photonic metamaterials for passively dynamic solar thermal and coldness harvesting.
    Wu H; Shang D; Zhang H; Zhi L; Sun S; Cui S; Yan C
    Heliyon; 2024 Jan; 10(2):e23986. PubMed ID: 38293359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible composite film with artificial opal photonic crystals for efficient all-day passive radiative cooling.
    Nan F; Zhu YF; Wei HX; Lin Y; Fan B; Zhou L
    Opt Express; 2022 Feb; 30(4):6003-6015. PubMed ID: 35209548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive Daytime Radiative Cooling by Thermoplastic Polyurethane Wrapping Films with Controlled Hierarchical Porous Structures.
    Park C; Park C; Park S; Lee J; Choi JH; Kim YS; Yoo Y
    ChemSusChem; 2022 Dec; 15(24):e202201842. PubMed ID: 36269116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-Mode Porous Polymeric Films with Coral-like Hierarchical Structure for All-Day Radiative Cooling and Heating.
    Shi M; Song Z; Ni J; Du X; Cao Y; Yang Y; Wang W; Wang J
    ACS Nano; 2023 Feb; 17(3):2029-2038. PubMed ID: 36638216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiative cooling for passive thermal management towards sustainable carbon neutrality.
    Liang J; Wu J; Guo J; Li H; Zhou X; Liang S; Qiu CW; Tao G
    Natl Sci Rev; 2023 Jan; 10(1):nwac208. PubMed ID: 36684522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structurally Colored Radiative Cooling Cellulosic Films.
    Zhu W; Droguet B; Shen Q; Zhang Y; Parton TG; Shan X; Parker RM; De Volder MFL; Deng T; Vignolini S; Li T
    Adv Sci (Weinh); 2022 Sep; 9(26):e2202061. PubMed ID: 35843893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling.
    Rephaeli E; Raman A; Fan S
    Nano Lett; 2013 Apr; 13(4):1457-61. PubMed ID: 23461597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable-morphology polymer blend photonic metafoam for radiative cooling.
    Wang Y; Wang T; Liang J; Wu J; Yang M; Pan Y; Hou C; Liu C; Shen C; Tao G; Liu X
    Mater Horiz; 2023 Oct; 10(11):5060-5070. PubMed ID: 37661692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Chitosan to Chitin: Bio-Inspired Thin Films for Passive Daytime Radiative Cooling.
    Lauster T; Mauel A; Herrmann K; Veitengruber V; Song Q; Senker J; Retsch M
    Adv Sci (Weinh); 2023 Apr; 10(11):e2206616. PubMed ID: 36793085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Thin Polymer Coating as a Selective Thermal Emitter for Passive Daytime Radiative Cooling.
    Banik U; Agrawal A; Meddeb H; Sergeev O; Reininghaus N; Götz-Köhler M; Gehrke K; Stührenberg J; Vehse M; Sznajder M; Agert C
    ACS Appl Mater Interfaces; 2021 May; 13(20):24130-24137. PubMed ID: 33974398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive radiative cooling below ambient air temperature under direct sunlight.
    Raman AP; Anoma MA; Zhu L; Rephaeli E; Fan S
    Nature; 2014 Nov; 515(7528):540-4. PubMed ID: 25428501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capped MIM metamaterial for ultra-broadband perfect absorbing and its application in radiative cooling.
    Wei B; Zhu H; Wu Q; Cai G; Liu Q
    Appl Opt; 2023 Jul; 62(21):5660-5665. PubMed ID: 37707182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretation of the Top-of-Atmosphere Energy Flux for Future Arctic Warming.
    Hwang J; Choi YS; Yoo C; Wang Y; Su H; Jiang JH
    Sci Rep; 2019 Sep; 9(1):13059. PubMed ID: 31506462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.