These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 379501)

  • 1. ATP-Pi exchange preparation from Escherichia coli.
    Nelson N; Chibovsky R; Gutnick DL
    Methods Enzymol; 1979; 55():358-63. PubMed ID: 379501
    [No Abstract]   [Full Text] [Related]  

  • 2. Techniques for measurement of oxidative phosphorylation in intact bacteria and in membrane preparations of Escherichia coli.
    Hempfling WP; Hertzberg EL
    Methods Enzymol; 1979; 55():164-75. PubMed ID: 379500
    [No Abstract]   [Full Text] [Related]  

  • 3. ATP synthesis by an artificial proton gradient in right-side-out membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    Biochem Biophys Res Commun; 1976 Jan; 68(2):497-502. PubMed ID: 3178
    [No Abstract]   [Full Text] [Related]  

  • 4. Analyzing protein phosphorylation in prokaryotes.
    Cortay JC; Nègre D; Cozzone AJ
    Methods Enzymol; 1991; 200():214-27. PubMed ID: 1956319
    [No Abstract]   [Full Text] [Related]  

  • 5. Purification and reconstitution of the 32Pi-ATP exchange activity of bovine chromaffin granule membrane.
    Roisin MP; Henry JP
    Biochim Biophys Acta; 1982 Aug; 681(2):292-9. PubMed ID: 7115699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reply to letters on "caloric catastrophe": Inadequacy of the energy available from ATP for membrane transport.
    Minkoff L; Damadian R
    Biophys J; 1974 Jan; 14(1):69-72. PubMed ID: 4272845
    [No Abstract]   [Full Text] [Related]  

  • 7. Preparation of (beta-32P)ribonucleoside-5'-triposphates using permeable cells of Escherichia coli.
    Raué HA; Cashel M
    Anal Biochem; 1973 Nov; 56(1):129-36. PubMed ID: 4587574
    [No Abstract]   [Full Text] [Related]  

  • 8. Mitochondrial ATP-Pi exchange complex.
    Hatefi Y; Stiggall DL; Galante Y; Hanstein WG
    Biochem Biophys Res Commun; 1974 Nov; 61(1):313-21. PubMed ID: 4155298
    [No Abstract]   [Full Text] [Related]  

  • 9. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a double isotopic labeling method to a study of the interaction of mitochondrially bound rat brain hexokinase with intramitochondrial compartments of ATP generated by oxidative phosphorylation.
    de Cerqueira Cesar M; Wilson JE
    Arch Biochem Biophys; 1995 Dec; 324(1):9-14. PubMed ID: 7503565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Ca2+-stimulated incorporation of phosphate into ATP in chloroplasts; the problem of allotopy.
    Bakker-Grunwald T
    Biochim Biophys Acta; 1974 Apr; 347(1):141-3. PubMed ID: 4433556
    [No Abstract]   [Full Text] [Related]  

  • 12. Preparation and reconstitution of membrane-associated maltose transporter complex of Escherichia coli.
    Hall JA; Davidson AL; Nikaido H
    Methods Enzymol; 1998; 292():20-9. PubMed ID: 9711543
    [No Abstract]   [Full Text] [Related]  

  • 13. Phosphate efflux through the channels formed by colicins and phage T5 in Escherichia coli cells is responsible for the fall in cytoplasmic ATP.
    Guihard G; Bénédetti H; Besnard M; Letellier L
    J Biol Chem; 1993 Aug; 268(24):17775-80. PubMed ID: 7688731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method of the rapid preparation of adenosine 5'-gamma-[32P] triphosphate by chemical synthesis.
    Koziołkiewicz W; Pankowski J; Janecka A
    Prep Biochem; 1978; 8(6):471-8. PubMed ID: 219425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific dicyclohexylcarbodiimide inhibition of the E-P + H2O equilibrium E + Pi reaction and ATP equilibrium Pi exchange in sarcoplasmic reticulum adenosinetriphosphatase.
    Scofano HM; Barrabin H; Lewis D; Inesi G
    Biochemistry; 1985 Feb; 24(4):1025-9. PubMed ID: 3158344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of the carbodiimide-reactive protein component of the ATP energy-transducing system of Escherichia coli.
    Fillingame RH
    J Biol Chem; 1976 Nov; 251(21):6630-7. PubMed ID: 789371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rapid labeling of adenosine triphosphate by 32P-labeled inorganic phosphate and the exchange of phosphate oxygens as related to conformational coupling in oxidative phosphorylation.
    Cross RL; Boyer PD
    Biochemistry; 1975 Jan; 14(2):392-8. PubMed ID: 1168064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative phosphorylation in bacteria: a genetic approach.
    Gutnick DL; Fragman D
    Horiz Biochem Biophys; 1977; 3():192-223. PubMed ID: 142062
    [No Abstract]   [Full Text] [Related]  

  • 19. ATP-Pi and ITP-Pi exchange by cardiac sarcoplasmic reticulum.
    Plank B; Hellmann G; Punzengruber C; Suko J
    Biochim Biophys Acta; 1979 Jan; 550(2):259-68. PubMed ID: 758947
    [No Abstract]   [Full Text] [Related]  

  • 20. Phosphate transport and the stoicheiometry of respiratory driven proton translocation in Escherichia coli.
    Cox JC; Haddock BA
    Biochem Biophys Res Commun; 1978 May; 82(1):46-52. PubMed ID: 27190
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.