These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37950331)

  • 1. Evaluation of deep learning-based feature selection for single-cell RNA sequencing data analysis.
    Huang H; Liu C; Wagle MM; Yang P
    Genome Biol; 2023 Nov; 24(1):259. PubMed ID: 37950331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the use of QDE-SVM for gene feature selection and cell type classification from scRNA-seq data.
    Ng GYL; Tan SC; Ong CS
    PLoS One; 2023; 18(10):e0292961. PubMed ID: 37856458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based advances and applications for single-cell RNA-sequencing data analysis.
    Bao S; Li K; Yan C; Zhang Z; Qu J; Zhou M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Deep Learning on Single-cell RNA Sequencing Data Analysis: A Review.
    Brendel M; Su C; Bai Z; Zhang H; Elemento O; Wang F
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):814-835. PubMed ID: 36528240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning tackles single-cell analysis-a survey of deep learning for scRNA-seq analysis.
    Flores M; Liu Z; Zhang T; Hasib MM; Chiu YC; Ye Z; Paniagua K; Jo S; Zhang J; Gao SJ; Jin YF; Chen Y; Huang Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data.
    Yu L; Cao Y; Yang JYH; Yang P
    Genome Biol; 2022 Feb; 23(1):49. PubMed ID: 35135612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TripletCell: a deep metric learning framework for accurate annotation of cell types at the single-cell level.
    Liu Y; Wei G; Li C; Shen LC; Gasser RB; Song J; Chen D; Yu DJ
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study.
    Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data.
    Wang H; Zhao J; Zheng C; Su Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010772. PubMed ID: 36534702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations.
    Lei T; Chen R; Zhang S; Chen Y
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37769630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scDLC: a deep learning framework to classify large sample single-cell RNA-seq data.
    Zhou Y; Peng M; Yang B; Tong T; Zhang B; Tang N
    BMC Genomics; 2022 Jul; 23(1):504. PubMed ID: 35831808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DEMOC: a deep embedded multi-omics learning approach for clustering single-cell CITE-seq data.
    Zou G; Lin Y; Han T; Ou-Yang L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36047285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attention-based deep clustering method for scRNA-seq cell type identification.
    Li S; Guo H; Zhang S; Li Y; Li M
    PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-View Clustering With Graph Learning for scRNA-Seq Data.
    Wu W; Zhang W; Hou W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.