These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 379504)

  • 1. The use of K+ diffusion gradients to support transport by Escherichia coli membrane vesicles.
    Hirata H
    Methods Enzymol; 1979; 55():676-80. PubMed ID: 379504
    [No Abstract]   [Full Text] [Related]  

  • 2. Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential.
    Hirata H; Altendorf K; Harold FM
    J Biol Chem; 1974 May; 249(9):2939-45. PubMed ID: 4133356
    [No Abstract]   [Full Text] [Related]  

  • 3. Sodium-proton antiport in isolated membrane vesicles of Escherichia coli.
    Schuldiner S; Fishkes H
    Biochemistry; 1978 Feb; 17(4):706-11. PubMed ID: 23828
    [No Abstract]   [Full Text] [Related]  

  • 4. Membrane potential and active transport in membrane vesicles from Escherichia coli.
    Schuldiner S; Kaback HR
    Biochemistry; 1975 Dec; 14(25):5451-61. PubMed ID: 172125
    [No Abstract]   [Full Text] [Related]  

  • 5. Determination of the membrane potential in bacterial membrane vesicles from the accumulation of N-methyldeptropine.
    Ruifrok PG; Konings WN; Meijer DK
    FEBS Lett; 1979 Sep; 105(1):171-6. PubMed ID: 385342
    [No Abstract]   [Full Text] [Related]  

  • 6. Valinomycin-induced uptake of potassium in membrane vesicles from Escherichia coli.
    Bhattacharyya P; Epstein W; Silver S
    Proc Natl Acad Sci U S A; 1971 Jul; 68(7):1488-92. PubMed ID: 4934520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli.
    Altendorf K; Hirata H; Harold FM
    J Biol Chem; 1975 Feb; 250(4):1405-12. PubMed ID: 1089658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport across isolated bacterial cytoplasmic membranes.
    Kaback HR
    Biochim Biophys Acta; 1972 Aug; 265(3):367-416. PubMed ID: 4581579
    [No Abstract]   [Full Text] [Related]  

  • 9. Molecular biology and energetics of membrane transport.
    Kaback HR
    J Cell Physiol; 1976 Dec; 89(4):575-93. PubMed ID: 13080
    [No Abstract]   [Full Text] [Related]  

  • 10. K+-dependent Na+ transport driven by respiration in Escherichia coli cells and membrane vesicles.
    Verkhovskaya ML; Verkhovsky MI; Wikström M
    Biochim Biophys Acta; 1996 Mar; 1273(3):207-16. PubMed ID: 8616158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoinactivation of the beta-galactoside transport system in Escherichia coli membrane vesicles with an impermeant azidophenylgalactoside.
    Rudnick G; Kaback HR
    J Biol Chem; 1975 Sep; 250(17):6847-51. PubMed ID: 1099095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical potential dependence of Na+-sugar cotransport determined using TPP+ influx.
    Restrepo D; Kimmich GA
    Ann N Y Acad Sci; 1985; 456():77-9. PubMed ID: 3867314
    [No Abstract]   [Full Text] [Related]  

  • 13. Ferrichrome transport in inner membrane vesicles of Escherichia coli K12.
    Negrin RS; Neilands JB
    J Biol Chem; 1978 Apr; 253(7):2339-42. PubMed ID: 344313
    [No Abstract]   [Full Text] [Related]  

  • 14. Valinomycin-induced cation transport in vesicles does not reflect the activity of K+ transport systems in Escherichia coli.
    Altendorf K; Epstein W; Löhmann A
    J Bacteriol; 1986 Apr; 166(1):334-7. PubMed ID: 3514580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active transport in bacterial cytoplasmic membrane vesicles.
    Kaback HR
    Symp Soc Exp Biol; 1973; 27():145-74. PubMed ID: 4594375
    [No Abstract]   [Full Text] [Related]  

  • 16. A novel antiporter activity catalyzing sodium and potassium transport from right-side-out vesicles of E. coli.
    Verkhovskaya ML; Verkhovsky MI; Wikström M
    FEBS Lett; 1995 Apr; 363(1-2):46-8. PubMed ID: 7729551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexity in valinomycin effects on amino acid transport.
    De Cespedes C; Christensen HN
    Biochim Biophys Acta; 1974 Feb; 339(1):139-45. PubMed ID: 4851127
    [No Abstract]   [Full Text] [Related]  

  • 18. Glucose 6-phosphate transport in membrane vesicles isolated from Escherichia coli: effect of imposed electrical potential and pH gradient.
    LeBlanc G; Rimon G; Kaback HR
    Biochemistry; 1980 May; 19(11):2522-8. PubMed ID: 6992861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Requirement for membrane potential in active transport of glutamine by Escherichia coli.
    Plate CA
    J Bacteriol; 1979 Jan; 137(1):221-5. PubMed ID: 153897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles.
    Lombardi FJ; Reeves JP; Short SA; Kaback HR
    Ann N Y Acad Sci; 1974 Feb; 227():312-27. PubMed ID: 4363926
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.