These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37950627)

  • 1. Cellular ROS tolerance determines the effect of plumbagin on osteoclast differentiation.
    Sultanli S; Schneider J; Burkart SS; Binder M; Kubatzky KF
    FASEB J; 2023 Dec; 37(12):e23293. PubMed ID: 37950627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plumbagin, a Biomolecule with (Anti)Osteoclastic Properties.
    Sultanli S; Ghumnani S; Ashma R; Kubatzky KF
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33803472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plumbagin inhibits breast tumor bone metastasis and osteolysis by modulating the tumor-bone microenvironment.
    Li Z; Xiao J; Wu X; Li W; Yang Z; Xie J; Xu L; Cai X; Lin Z; Guo W; Luo J; Liu M
    Curr Mol Med; 2012 Sep; 12(8):967-81. PubMed ID: 22574935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plumbagin inhibits osteoclastogenesis and reduces human breast cancer-induced osteolytic bone metastasis in mice through suppression of RANKL signaling.
    Sung B; Oyajobi B; Aggarwal BB
    Mol Cancer Ther; 2012 Feb; 11(2):350-9. PubMed ID: 22090419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of thioredoxin reductase and glutathione reductase in plumbagin-induced, reactive oxygen species-mediated apoptosis in cancer cell lines.
    Hwang GH; Ryu JM; Jeon YJ; Choi J; Han HJ; Lee YM; Lee S; Bae JS; Jung JW; Chang W; Kim LK; Jee JG; Lee MY
    Eur J Pharmacol; 2015 Oct; 765():384-93. PubMed ID: 26341012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory Effect of (2
    Kim EN; Kim GR; Yu JS; Kim KH; Jeong GS
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33379346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerium Oxide Nanoparticles Regulate Osteoclast Differentiation Bidirectionally by Modulating the Cellular Production of Reactive Oxygen Species.
    Yuan K; Mei J; Shao D; Zhou F; Qiao H; Liang Y; Li K; Tang T
    Int J Nanomedicine; 2020; 15():6355-6372. PubMed ID: 32922006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phytochemical plumbagin reciprocally modulates osteoblasts and osteoclasts.
    Yadav AM; Bagade MM; Ghumnani S; Raman S; Saha B; Kubatzky KF; Ashma R
    Biol Chem; 2022 Jan; 403(2):211-229. PubMed ID: 34882360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GSH attenuates RANKL-induced osteoclast formation in vitro and LPS-induced bone loss in vivo.
    Han B; Geng H; Liu L; Wu Z; Wang Y
    Biomed Pharmacother; 2020 Aug; 128():110305. PubMed ID: 32485573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective Effects of Fermented Oyster Extract against RANKL-Induced Osteoclastogenesis through Scavenging ROS Generation in RAW 264.7 Cells.
    Jeong JW; Choi SH; Han MH; Kim GY; Park C; Hong SH; Lee BJ; Park EK; Kim SO; Leem SH; Jeon YJ; Choi YH
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30901917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimethyl fumarate inhibits osteoclasts via attenuation of reactive oxygen species signalling by augmented antioxidation.
    Yamaguchi Y; Kanzaki H; Katsumata Y; Itohiya K; Fukaya S; Miyamoto Y; Narimiya T; Wada S; Nakamura Y
    J Cell Mol Med; 2018 Feb; 22(2):1138-1147. PubMed ID: 29063666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoisomerase II.
    Kawiak A; Piosik J; Stasilojc G; Gwizdek-Wisniewska A; Marczak L; Stobiecki M; Bigda J; Lojkowska E
    Toxicol Appl Pharmacol; 2007 Sep; 223(3):267-76. PubMed ID: 17618663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel RANKL-targeted flavonoid glycoside prevents osteoporosis through inhibiting NFATc1 and reactive oxygen species.
    Hong G; Chen Z; Han X; Zhou L; Pang F; Wu R; Shen Y; He X; Hong Z; Li Z; He W; Wei Q
    Clin Transl Med; 2021 May; 11(5):e392. PubMed ID: 34047464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The polymethoxy flavonoid sudachitin suppresses inflammatory bone destruction by directly inhibiting osteoclastogenesis due to reduced ROS production and MAPK activation in osteoclast precursors.
    Ohyama Y; Ito J; Kitano VJ; Shimada J; Hakeda Y
    PLoS One; 2018; 13(1):e0191192. PubMed ID: 29342179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-Adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species.
    Kondo H; Takeuchi S; Togari A
    Am J Physiol Endocrinol Metab; 2013 Mar; 304(5):E507-15. PubMed ID: 23169789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual Oxidase Maturation Factor 1 Positively Regulates RANKL-Induced Osteoclastogenesis via Activating Reactive Oxygen Species and TRAF6-Mediated Signaling.
    Cheon YH; Lee CH; Jeong DH; Kwak SC; Kim S; Lee MS; Kim JY
    Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32899248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sargassum serratifolium attenuates RANKL-induced osteoclast differentiation and oxidative stress through inhibition of NF-κB and activation of the Nrf2/HO-1 signaling pathway.
    Kim HJ; Park C; Kim GY; Park EK; Jeon YJ; Kim S; Hwang HJ; Choi YH
    Biosci Trends; 2018; 12(3):257-265. PubMed ID: 30012915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SOD2 and Sirt3 Control Osteoclastogenesis by Regulating Mitochondrial ROS.
    Kim H; Lee YD; Kim HJ; Lee ZH; Kim HH
    J Bone Miner Res; 2017 Feb; 32(2):397-406. PubMed ID: 27540894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acteoside suppresses RANKL-mediated osteoclastogenesis by inhibiting c-Fos induction and NF-κB pathway and attenuating ROS production.
    Lee SY; Lee KS; Yi SH; Kook SH; Lee JC
    PLoS One; 2013; 8(12):e80873. PubMed ID: 24324641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling.
    Thummuri D; Jeengar MK; Shrivastava S; Nemani H; Ramavat RN; Chaudhari P; Naidu VG
    Pharmacol Res; 2015 Sep; 99():63-73. PubMed ID: 26022736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.