BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 3795067)

  • 41. Staircase-like potentiation of calcium release in mouse myotubes during repetitive short-term application of threshold caffeine.
    Lange PS; Rüdel R; Taylor SR; Föhr KJ
    Pflugers Arch; 2001 Jun; 442(3):435-42. PubMed ID: 11484776
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium transients and calcium release in rat fast-twitch skeletal muscle fibres.
    Garcia J; Schneider MF
    J Physiol; 1993 Apr; 463():709-28. PubMed ID: 8246202
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Increases in intracellular calcium ion concentration during depolarization of cultured embryonic Xenopus spinal neurones.
    Barish ME
    J Physiol; 1991 Dec; 444():545-65. PubMed ID: 1668350
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of repeated tetanic stimulation on excitation-contraction coupling in cut muscle fibres of the frog.
    Györke S
    J Physiol; 1993 May; 464():699-710. PubMed ID: 8229825
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Local calcium release in mammalian skeletal muscle.
    Shirokova N; García J; Ríos E
    J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):377-84. PubMed ID: 9763628
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Saturation of calcium channels and surface charge effects in skeletal muscle fibres of the frog.
    Cota G; Stefani E
    J Physiol; 1984 Jun; 351():135-54. PubMed ID: 6086902
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intracellular calcium measured with calcium-sensitive micro-electrodes and Arsenazo III in voltage-clamped Aplysia neurones.
    Gorman AL; Levy S; Nasi E; Tillotson D
    J Physiol; 1984 Aug; 353():127-42. PubMed ID: 6434727
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Arsenazo III and antipyrylazo III calcium transients in single skeletal muscle fibers.
    Palade P; Vergara J
    J Gen Physiol; 1982 Apr; 79(4):679-707. PubMed ID: 6802933
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of intracellular ruthenium red on excitation-contraction coupling in intact frog skeletal muscle fibres.
    Baylor SM; Hollingworth S; Marshall MW
    J Physiol; 1989 Jan; 408():617-35. PubMed ID: 2476559
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of gallopamil on calcium release and intramembrane charge movements in frog skeletal muscle fibres.
    Feldmeyer D; Melzer W; Pohl B
    J Physiol; 1990 Feb; 421():343-62. PubMed ID: 2348396
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Caffeine-induced release and reuptake of Ca2+ by Ca2+ stores in myocytes from guinea-pig urinary bladder.
    Ganitkevich VYa ; Isenberg G
    J Physiol; 1992 Dec; 458():99-117. PubMed ID: 1284569
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inactivation of the slow calcium current in twitch skeletal muscle fibres of the frog.
    Francini F; Pizza L; Traina G
    J Physiol; 1992 Mar; 448():633-53. PubMed ID: 1593482
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effects of caffeine on sodium transport, membrane potential, mechanical tension and ultrastructure in barnacle muscle fibres.
    Bittar EE; Hift H; Huddart H; Tong E
    J Physiol; 1974 Oct; 242(1):1-34. PubMed ID: 4373569
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calcium transients in normal and denervated slow muscle fibres of the frog.
    Miledi R; Parker I; Schalow G
    J Physiol; 1981 Sep; 318():191-206. PubMed ID: 6976426
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calcium-channel gating in frog skeletal muscle membrane: effect of temperature.
    Cota G; Nicola Siri L; Stefani E
    J Physiol; 1983 May; 338():395-412. PubMed ID: 6308247
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quinine and caffeine effects on 45Ca movements in frog sartorius muscle.
    Isaacson A; Sandow A
    J Gen Physiol; 1967 Sep; 50(8):2109-28. PubMed ID: 6066065
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium release in frog cut twitch fibers exposed to different ionic environments under voltage clamp.
    Hui CS
    Biophys J; 1999 Oct; 77(4):2123-36. PubMed ID: 10512832
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of low myoplasmic Mg2+ on calcium binding by parvalbumin and calcium uptake by the sarcoplasmic reticulum in frog skeletal muscle.
    Jacquemond V; Schneider MF
    J Gen Physiol; 1992 Jul; 100(1):115-35. PubMed ID: 1512554
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of oxidation and cytosolic redox conditions on excitation-contraction coupling in rat skeletal muscle.
    Posterino GS; Cellini MA; Lamb GD
    J Physiol; 2003 Mar; 547(Pt 3):807-23. PubMed ID: 12562929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.