These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 37950707)
1. Isopentyl-Deoxynboquinone Induces Mitochondrial Dysfunction and G2/M Phase Cell Cycle Arrest to Selectively Kill Jiang L; Liu Y; Tumbath S; Boudreau MW; Chatkewitz LE; Wang J; Su X; Zahid KR; Li K; Chen Y; Yang K; Hergenrother PJ; Huang X Antioxid Redox Signal; 2024 Jul; 41(1-3):74-92. PubMed ID: 37950707 [No Abstract] [Full Text] [Related]
2. Augmented Concentration of Isopentyl-Deoxynyboquinone in Tumors Selectively Kills NAD(P)H Quinone Oxidoreductase 1-Positive Cancer Cells through Programmed Necrotic and Apoptotic Mechanisms. Wang J; Su X; Jiang L; Boudreau MW; Chatkewitz LE; Kilgore JA; Zahid KR; Williams NS; Chen Y; Liu S; Hergenrother PJ; Huang X Cancers (Basel); 2023 Dec; 15(24):. PubMed ID: 38136388 [TBL] [Abstract][Full Text] [Related]
3. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis. Huang X; Dong Y; Bey EA; Kilgore JA; Bair JS; Li LS; Patel M; Parkinson EI; Wang Y; Williams NS; Gao J; Hergenrother PJ; Boothman DA Cancer Res; 2012 Jun; 72(12):3038-47. PubMed ID: 22532167 [TBL] [Abstract][Full Text] [Related]
4. Tumor-selective use of DNA base excision repair inhibition in pancreatic cancer using the NQO1 bioactivatable drug, β-lapachone. Chakrabarti G; Silvers MA; Ilcheva M; Liu Y; Moore ZR; Luo X; Gao J; Anderson G; Liu L; Sarode V; Gerber DE; Burma S; DeBerardinis RJ; Gerson SL; Boothman DA Sci Rep; 2015 Nov; 5():17066. PubMed ID: 26602448 [TBL] [Abstract][Full Text] [Related]
6. Pharmacokinetics and derivation of an anticancer dosing regimen for the novel anti-cancer agent isobutyl-deoxynyboquinone (IB-DNQ), a NQO1 bioactivatable molecule, in the domestic felid species. Lundberg AP; Francis JM; Pajak M; Parkinson EI; Wycislo KL; Rosol TJ; Brown ME; London CA; Dirikolu L; Hergenrother PJ; Fan TM Invest New Drugs; 2017 Apr; 35(2):134-144. PubMed ID: 27975234 [TBL] [Abstract][Full Text] [Related]
7. Tumor-selective, futile redox cycle-induced bystander effects elicited by NQO1 bioactivatable radiosensitizing drugs in triple-negative breast cancers. Cao L; Li LS; Spruell C; Xiao L; Chakrabarti G; Bey EA; Reinicke KE; Srougi MC; Moore Z; Dong Y; Vo P; Kabbani W; Yang CR; Wang X; Fattah F; Morales JC; Motea EA; Bornmann WG; Yordy JS; Boothman DA Antioxid Redox Signal; 2014 Jul; 21(2):237-50. PubMed ID: 24512128 [TBL] [Abstract][Full Text] [Related]
8. The NQO1 bioactivatable drug, β-lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism. Silvers MA; Deja S; Singh N; Egnatchik RA; Sudderth J; Luo X; Beg MS; Burgess SC; DeBerardinis RJ; Boothman DA; Merritt ME J Biol Chem; 2017 Nov; 292(44):18203-18216. PubMed ID: 28916726 [TBL] [Abstract][Full Text] [Related]
10. Albumin binding revitalizes NQO1 bioactivatable drugs as novel therapeutics for pancreatic cancer. Dou L; Liu H; Wang K; Liu J; Liu L; Ye J; Wang R; Deng H; Qian F J Control Release; 2022 Sep; 349():876-889. PubMed ID: 35907592 [TBL] [Abstract][Full Text] [Related]
12. Leveraging an NQO1 Bioactivatable Drug for Tumor-Selective Use of Poly(ADP-ribose) Polymerase Inhibitors. Huang X; Motea EA; Moore ZR; Yao J; Dong Y; Chakrabarti G; Kilgore JA; Silvers MA; Patidar PL; Cholka A; Fattah F; Cha Y; Anderson GG; Kusko R; Peyton M; Yan J; Xie XJ; Sarode V; Williams NS; Minna JD; Beg M; Gerber DE; Bey EA; Boothman DA Cancer Cell; 2016 Dec; 30(6):940-952. PubMed ID: 27960087 [TBL] [Abstract][Full Text] [Related]
13. Catalase abrogates β-lapachone-induced PARP1 hyperactivation-directed programmed necrosis in NQO1-positive breast cancers. Bey EA; Reinicke KE; Srougi MC; Varnes M; Anderson VE; Pink JJ; Li LS; Patel M; Cao L; Moore Z; Rommel A; Boatman M; Lewis C; Euhus DM; Bornmann WG; Buchsbaum DJ; Spitz DR; Gao J; Boothman DA Mol Cancer Ther; 2013 Oct; 12(10):2110-20. PubMed ID: 23883585 [TBL] [Abstract][Full Text] [Related]
14. Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy. Li LS; Bey EA; Dong Y; Meng J; Patra B; Yan J; Xie XJ; Brekken RA; Barnett CC; Bornmann WG; Gao J; Boothman DA Clin Cancer Res; 2011 Jan; 17(2):275-85. PubMed ID: 21224367 [TBL] [Abstract][Full Text] [Related]
15. NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by β-lapachone. Moore Z; Chakrabarti G; Luo X; Ali A; Hu Z; Fattah FJ; Vemireddy R; DeBerardinis RJ; Brekken RA; Boothman DA Cell Death Dis; 2015 Jan; 6(1):e1599. PubMed ID: 25590809 [TBL] [Abstract][Full Text] [Related]
16. PCNA inhibition enhances the cytotoxicity of β-lapachone in NQO1-Positive cancer cells by augmentation of oxidative stress-induced DNA damage. Su X; Wang J; Jiang L; Chen Y; Lu T; Mendonca MS; Huang X Cancer Lett; 2021 Oct; 519():304-314. PubMed ID: 34329742 [TBL] [Abstract][Full Text] [Related]
17. X-ray repair cross-complementing protein 1 (XRCC1) loss promotes β-lapachone -induced apoptosis in pancreatic cancer cells. Zheng Y; Zhang H; Guo Y; Chen Y; Chen H; Liu Y BMC Cancer; 2021 Nov; 21(1):1234. PubMed ID: 34789190 [TBL] [Abstract][Full Text] [Related]
19. DNA damage induced by KP372-1 hyperactivates PARP1 and enhances lethality of pancreatic cancer cells with PARP inhibition. Viera T; Patidar PL Sci Rep; 2020 Nov; 10(1):20210. PubMed ID: 33214574 [TBL] [Abstract][Full Text] [Related]
20. An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Bey EA; Bentle MS; Reinicke KE; Dong Y; Yang CR; Girard L; Minna JD; Bornmann WG; Gao J; Boothman DA Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11832-7. PubMed ID: 17609380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]