BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37951)

  • 1. Residues of lead and arsenic in crops cultured on old orchard soils.
    Kenyon DJ; Elfving DC; Pakkala IS; Bache CA; Lisk D
    Bull Environ Contam Toxicol; 1979 May; 22(1-2):221-3. PubMed ID: 37951
    [No Abstract]   [Full Text] [Related]  

  • 2. Arsenic and lead residues in carrots from foliar applications of monosodium methanearsonate (MSMA): A comparison between mineral and organic soils, or from soil residues.
    Zandstra BH; De Kryger TA
    Food Addit Contam; 2007 Jan; 24(1):34-42. PubMed ID: 17164215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal residues in plants cultivated on and in small mammals indigenous to old orchard soils.
    Elfving DC; Haschek WM; Stehn RA; Bache CA; Lisk DJ
    Arch Environ Health; 1978; 33(2):95-9. PubMed ID: 348127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Teaching analytical atomic spectroscopy advances in an environmental chemistry class using a project-based laboratory approach: investigation of lead and arsenic distributions in a lead arsenate contaminated apple orchard.
    Amarasiriwardena D
    Anal Bioanal Chem; 2007 May; 388(2):307-14. PubMed ID: 17342538
    [No Abstract]   [Full Text] [Related]  

  • 5. Residues of arsenic and lead in potato soils on Long Island.
    Sanok WJ; Ebel JG; Manzell KL; Gutenmann WH; Lisk DJ
    Chemosphere; 1995 Feb; 30(4):803-6. PubMed ID: 7889354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic and lead in an orchard environment.
    Aten CF; Bourke JB; Martini JH; Walton JC
    Bull Environ Contam Toxicol; 1980 Jan; 24(1):108-15. PubMed ID: 7357099
    [No Abstract]   [Full Text] [Related]  

  • 7. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard.
    Newton K; Amarasiriwardena D; Xing B
    Environ Pollut; 2006 Sep; 143(2):197-205. PubMed ID: 16480799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecotoxicological study of arsenic and lead contaminated soils in former orchards at the Hanford Site, USA.
    Delistraty D; Yokel J
    Environ Toxicol; 2014 Jan; 29(1):10-20. PubMed ID: 21922631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal.
    Dahal BM; Fuerhacker M; Mentler A; Karki KB; Shrestha RR; Blum WE
    Environ Pollut; 2008 Sep; 155(1):157-63. PubMed ID: 18068879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic, lead, and other trace elements in soils contaminated with pesticide residues at the Hanford site (USA).
    Yokel J; Delistraty DA
    Environ Toxicol; 2003 Apr; 18(2):104-14. PubMed ID: 12635098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies.
    Paltseva A; Cheng Z; Deeb M; Groffman PM; Shaw RK; Maddaloni M
    Sci Total Environ; 2018 Nov; 640-641():273-283. PubMed ID: 29859443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Arsenic accumulation in different agricultural soils in Shouguang of Shandong Province].
    Zeng XB; Li LF; Bai LY; Mei XR; Yang JB; Hu LJ
    Ying Yong Sheng Tai Xue Bao; 2007 Feb; 18(2):310-6. PubMed ID: 17450732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils.
    Onireti OO; Lin C; Qin J
    Chemosphere; 2017 Mar; 170():161-168. PubMed ID: 27988451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China.
    Huang RQ; Gao SF; Wang WL; Staunton S; Wang G
    Sci Total Environ; 2006 Sep; 368(2-3):531-41. PubMed ID: 16624379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccessibility of As and Pb in orchard and urban soils amended with phosphate, Fe oxide and organic matter.
    Cai M; McBride MB; Li K; Li Z
    Chemosphere; 2017 Apr; 173():153-159. PubMed ID: 28107713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collateral benefits and hidden hazards of soil arsenic during abatement assessment of residential lead hazards.
    Elless MP; Ferguson BW; Bray CA; Patch S; Mielke H; Blaylock MJ
    Environ Pollut; 2008 Nov; 156(1):20-8. PubMed ID: 18328607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of sedimentary arsenic through irrigated groundwater on soil, plant, crops and human continuum from Bengal delta: special reference to raw and cooked rice.
    Roychowdhury T
    Food Chem Toxicol; 2008 Aug; 46(8):2856-64. PubMed ID: 18602205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic.
    Shelmerdine PA; Black CR; McGrath SP; Young SD
    Environ Pollut; 2009 May; 157(5):1589-96. PubMed ID: 19171413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rapid determination of trace elements in soils and plants by x-ray fluorescence analysis.
    Williams C
    J Sci Food Agric; 1976 Jun; 27(6):561-70. PubMed ID: 972530
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.