These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 37951141)
41. Phthalate and non-phthalate plasticizers in indoor dust from childcare facilities, salons, and homes across the USA. Subedi B; Sullivan KD; Dhungana B Environ Pollut; 2017 Nov; 230():701-708. PubMed ID: 28728088 [TBL] [Abstract][Full Text] [Related]
42. Children's phthalate intakes and resultant cumulative exposures estimated from urine compared with estimates from dust ingestion, inhalation and dermal absorption in their homes and daycare centers. Bekö G; Weschler CJ; Langer S; Callesen M; Toftum J; Clausen G PLoS One; 2013; 8(4):e62442. PubMed ID: 23626820 [TBL] [Abstract][Full Text] [Related]
43. Concentrations of phthalates and bisphenol A in Norwegian foods and beverages and estimated dietary exposure in adults. Sakhi AK; Lillegaard IT; Voorspoels S; Carlsen MH; Løken EB; Brantsæter AL; Haugen M; Meltzer HM; Thomsen C Environ Int; 2014 Dec; 73():259-69. PubMed ID: 25173060 [TBL] [Abstract][Full Text] [Related]
44. Phthalate metabolites in urine samples from Danish children and correlations with phthalates in dust samples from their homes and daycare centers. Langer S; Bekö G; Weschler CJ; Brive LM; Toftum J; Callesen M; Clausen G Int J Hyg Environ Health; 2014 Jan; 217(1):78-87. PubMed ID: 23623597 [TBL] [Abstract][Full Text] [Related]
45. Exposure estimates of phthalates and DINCH from foods and personal care products in comparison with biomonitoring data in 24-hour urine from the Norwegian EuroMix biomonitoring study. Gkrillas A; Dirven H; Papadopoulou E; Andreassen M; Hjertholm H; Husøy T Environ Int; 2021 Oct; 155():106598. PubMed ID: 33957536 [TBL] [Abstract][Full Text] [Related]
46. Urinary Concentrations of Major Phthalate and Alternative Plasticizer Metabolites in Children of Thailand, Indonesia, and Saudi Arabia, and Associated Risks. Lee I; Pälmke C; Ringbeck B; Ihn Y; Gotthardt A; Lee G; Alakeel R; Alrashed M; Tosepu R; Jayadipraja EA; Tantrakarnapa K; Kliengchuay W; Kho Y; Koch HM; Choi K Environ Sci Technol; 2021 Dec; 55(24):16526-16537. PubMed ID: 34846872 [TBL] [Abstract][Full Text] [Related]
47. Ongoing exposure to endocrine disrupting phthalates and alternative plasticizers in neonatal intensive care unit patients. Panneel L; Cleys P; Poma G; Ait Bamai Y; Jorens PG; Covaci A; Mulder A Environ Int; 2024 Apr; 186():108605. PubMed ID: 38569425 [TBL] [Abstract][Full Text] [Related]
48. Diisononyl 1,2-cyclohexanedicarboxylic acid (DINCH) and Di(2-ethylhexyl) terephthalate (DEHT) in indoor dust samples: concentration and analytical problems. Nagorka R; Conrad A; Scheller C; Süssenbach B; Moriske HJ Int J Hyg Environ Health; 2011 Jan; 214(1):26-35. PubMed ID: 20851676 [TBL] [Abstract][Full Text] [Related]
49. Trends of the internal phthalate exposure of young adults in Germany--follow-up of a retrospective human biomonitoring study. Göen T; Dobler L; Koschorreck J; Müller J; Wiesmüller GA; Drexler H; Kolossa-Gehring M Int J Hyg Environ Health; 2011 Dec; 215(1):36-45. PubMed ID: 21889907 [TBL] [Abstract][Full Text] [Related]
50. Personal care product use and lifestyle affect phthalate and DINCH metabolite levels in teenagers and young adults. Stuchlík Fišerová P; Melymuk L; Komprdová K; Domínguez-Romero E; Scheringer M; Kohoutek J; Přibylová P; Andrýsková L; Piler P; Koch HM; Zvonař M; Esteban-López M; Castaño A; Klánová J Environ Res; 2022 Oct; 213():113675. PubMed ID: 35700762 [TBL] [Abstract][Full Text] [Related]
51. The European Human Biomonitoring Initiative (HBM4EU): Human biomonitoring guidance values for selected phthalates and a substitute plasticizer. Lange R; Apel P; Rousselle C; Charles S; Sissoko F; Kolossa-Gehring M; Ougier E Int J Hyg Environ Health; 2021 May; 234():113722. PubMed ID: 33711757 [TBL] [Abstract][Full Text] [Related]
52. Phthalate metabolites in 24-h urine samples of the German Environmental Specimen Bank (ESB) from 1988 to 2015 and a comparison with US NHANES data from 1999 to 2012. Koch HM; Rüther M; Schütze A; Conrad A; Pälmke C; Apel P; Brüning T; Kolossa-Gehring M Int J Hyg Environ Health; 2017 Mar; 220(2 Pt A):130-141. PubMed ID: 27863804 [TBL] [Abstract][Full Text] [Related]
53. Changes in levels of legacy and emerging organophosphorus flame retardants and plasticizers in indoor dust from a former e-waste recycling area in South China: 2013-2017. Tang B; Christia C; Luo XJ; Covaci A; Poma G; Mai BX Environ Sci Pollut Res Int; 2022 May; 29(22):33295-33304. PubMed ID: 35022984 [TBL] [Abstract][Full Text] [Related]
54. The cumulative risk assessment of phthalates exposure in preterm neonates. Al-Saleh I; Elkhatib R; Alnuwaysir H; Aldhalaan H; Binmanee A; Hawari A; Alhazzani F; Jabr MB Int J Hyg Environ Health; 2023 Mar; 248():114112. PubMed ID: 36657281 [TBL] [Abstract][Full Text] [Related]
55. Exposure to Phthalates in European Children, Adolescents and Adults since 2005: A Harmonized Approach Based on Existing HBM Data in the HBM4EU Initiative. Vogel N; Lange R; Schmidt P; Rodriguez Martin L; Remy S; Springer A; Puklová V; Černá M; Rudnai P; Középesy S; Janasik B; Ligocka D; Fábelová L; Kolena B; Petrovicova I; Jajcaj M; Eštóková M; Esteban-Lopez M; Castaño A; Tratnik JS; Stajnko A; Knudsen LE; Toppari J; Main KM; Juul A; Andersson AM; Jørgensen N; Frederiksen H; Thomsen C; Sakhi AK; Åkesson A; Hartmann C; Dewolf MC; Koppen G; Biot P; Den Hond E; Voorspoels S; Gilles L; Govarts E; Murawski A; Gerofke A; Weber T; Rüther M; Gutleb AC; Guignard C; Berman T; Koch HM; Kolossa-Gehring M Toxics; 2023 Mar; 11(3):. PubMed ID: 36977006 [TBL] [Abstract][Full Text] [Related]
56. Estimating the contribution of inhalation exposure to di-2-ethylhexyl phthalate (DEHP) for PVC production workers, using personal air sampling and urinary metabolite monitoring. Fong JP; Lee FJ; Lu IS; Uang SN; Lee CC Int J Hyg Environ Health; 2014 Jan; 217(1):102-9. PubMed ID: 23665067 [TBL] [Abstract][Full Text] [Related]
57. Estimated daily intake of phthalates, parabens, and bisphenol A in hospitalised very low birth weight infants. Strømmen K; Lyche JL; Moltu SJ; Müller MHB; Blakstad EW; Brække K; Sakhi AK; Thomsen C; Nakstad B; Rønnestad AE; Drevon CA; Iversen PO Chemosphere; 2022 Dec; 309(Pt 1):136687. PubMed ID: 36206919 [TBL] [Abstract][Full Text] [Related]
58. Associations of phthalate concentrations in floor dust and multi-surface dust with the interior materials in Japanese dwellings. Ait Bamai Y; Araki A; Kawai T; Tsuboi T; Saito I; Yoshioka E; Kanazawa A; Tajima S; Shi C; Tamakoshi A; Kishi R Sci Total Environ; 2014 Jan; 468-469():147-57. PubMed ID: 24012901 [TBL] [Abstract][Full Text] [Related]
59. Significant changes in follicular fluid phthalate metabolite levels reflect the lifestyle changes brought about by the strict COVID-19 lockdown in India. Parikh FR; Uttamchandani S; Naik N; Panpalia M; Sanap M; Kulkarni D; Sinkar P; Khandare P; Makwana P; Gawas S; Pandole A; Parikh R F S Sci; 2022 Aug; 3(3):237-245. PubMed ID: 35691586 [TBL] [Abstract][Full Text] [Related]
60. Co-occurrence of phthalate and non-phthalate plasticizers in dust and hand wipes: A comparison of levels across various sources. Shi Y; Zhao L; Zhu H; Cheng Z; Luo H; Sun H J Hazard Mater; 2023 Oct; 459():132271. PubMed ID: 37582303 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]