BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37951271)

  • 1. Catalytic stepwise pyrolysis for dechlorination and chemical recycling of PVC-containing mixed plastic wastes: Influence of temperature, heating rate, and catalyst.
    Hu Y; Li M; Zhou N; Yuan H; Guo Q; Jiao L; Ma Z
    Sci Total Environ; 2024 Jan; 908():168344. PubMed ID: 37951271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical upcycling of PVC-containing plastic wastes by thermal degradation and catalysis in a chlorine-rich environment.
    Kang J; Kim JY; Sung S; Lee Y; Gu S; Choi JW; Yoo CJ; Suh DJ; Choi J; Ha JM
    Environ Pollut; 2024 Feb; 342():123074. PubMed ID: 38048870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upgrading of solid recovered fuel (SRF) by dechlorination and catalytic pyrolysis over nanocrystalline ZSM-5 zeolite.
    Cueto J; Pérez-Martin G; Amodio L; Paniagua M; Morales G; Melero JA; Serrano DP
    Chemosphere; 2023 Oct; 339():139784. PubMed ID: 37567278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal degradation of PVC: A review.
    Yu J; Sun L; Ma C; Qiao Y; Yao H
    Waste Manag; 2016 Feb; 48():300-314. PubMed ID: 26687228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor.
    Sivagami K; Kumar KV; Tamizhdurai P; Govindarajan D; Kumar M; Nambi I
    RSC Adv; 2022 Mar; 12(13):7612-7620. PubMed ID: 35424760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological characteristics of polyvinyl chloride (PVC) dechlorination during pyrolysis process: Influence of PVC content and heating rate.
    Cao Q; Yuan G; Yin L; Chen D; He P; Wang H
    Waste Manag; 2016 Dec; 58():241-249. PubMed ID: 27596943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling dechlorination and catalytic pyrolysis to produce carbon nanotubes from mixed polyvinyl chloride and polyethylene.
    Yang Y; Wang G; Lei S; Xiao H; Yang H; Chen H
    Waste Manag; 2024 Apr; 178():97-104. PubMed ID: 38382351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dechlorination of waste polyvinyl chloride (PVC) through non-thermal plasma.
    Song J; Wang J; Sima J; Zhu Y; Du X; Williams PT; Huang Q
    Chemosphere; 2023 Oct; 338():139535. PubMed ID: 37467857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of carbon nanotubes by catalytic pyrolysis of dechlorinated PVC.
    Ma W; Zhu Y; Cai N; Wang X; Chen Y; Yang H; Chen H
    Waste Manag; 2023 Sep; 169():62-69. PubMed ID: 37413846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic Pyrolysis Kinetic Behavior and TG-FTIR-GC-MS Analysis of Metallized Food Packaging Plastics with Different Concentrations of ZSM-5 Zeolite Catalyst.
    Eimontas J; Striūgas N; Abdelnaby MA; Yousef S
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33652610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation and kinetics of chlorine-containing products during pyrolysis of plastic wastes.
    Pan J; Jiang H; Qing T; Zhang J; Tian K
    Chemosphere; 2021 Dec; 284():131348. PubMed ID: 34214932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes.
    López A; de Marco I; Caballero BM; Adrados A; Laresgoiti MF
    Waste Manag; 2011 Aug; 31(8):1852-8. PubMed ID: 21530221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Effect and Chlorine-Release Behaviors During Co-pyrolysis of LLDPE, PP, and PVC.
    Yuan Z; Zhang J; Zhao P; Wang Z; Cui X; Gao L; Guo Q; Tian H
    ACS Omega; 2020 May; 5(20):11291-11298. PubMed ID: 32478216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristic of fly ash derived-zeolite and its catalytic performance for fast pyrolysis of Jatropha waste.
    Vichaphund S; Aht-Ong D; Sricharoenchaikul V; Atong D
    Environ Technol; 2014; 35(17-20):2254-61. PubMed ID: 25145178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dechlorination of PVC wastes by hydrothermal treatment using alkaline additives.
    Zhao P; Li T; Yan W; Yuan L
    Environ Technol; 2018 Apr; 39(8):977-985. PubMed ID: 28394198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-pyrolysis of Fe
    Ye L; Li T; Hong L
    Waste Manag; 2021 May; 126():832-842. PubMed ID: 33895565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts.
    Miandad R; Barakat MA; Rehan M; Aburiazaiza AS; Ismail IMI; Nizami AS
    Waste Manag; 2017 Nov; 69():66-78. PubMed ID: 28882427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic level identification of ZSM-5 on biomass pyrolysis and aromatic hydrocarbon formation.
    Chen WH; Cheng CL; Lee KT; Lam SS; Ong HC; Ok YS; Saeidi S; Sharma AK; Hsieh TH
    Chemosphere; 2021 May; 271():129510. PubMed ID: 33434827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis of municipal plastic wastes II: Influence of raw material composition under catalytic conditions.
    López A; de Marco I; Caballero BM; Laresgoiti MF; Adrados A; Torres A
    Waste Manag; 2011; 31(9-10):1973-83. PubMed ID: 21689920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical recycling technologies for PVC waste and PVC-containing plastic waste: A review.
    Lu L; Li W; Cheng Y; Liu M
    Waste Manag; 2023 Jul; 166():245-258. PubMed ID: 37196390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.