These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37951397)

  • 1. Prediction of free radical reactions toward organic pollutants with easily accessible molecular descriptors.
    Zhang G; Zhu Q; Zheng H; Zhang S; Ma J
    Chemosphere; 2024 Jan; 346():140660. PubMed ID: 37951397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Structure--Activity Relationship (QSAR) for the Oxidation of Trace Organic Contaminants by Sulfate Radical.
    Xiao R; Ye T; Wei Z; Luo S; Yang Z; Spinney R
    Environ Sci Technol; 2015 Nov; 49(22):13394-402. PubMed ID: 26451961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-activity relationship for the oxidation of organic contaminants by peracetic acid using GA-MLR method.
    Shahi A; Vafaei Molamahmood H; Faraji N; Long M
    J Environ Manage; 2022 May; 310():114747. PubMed ID: 35196632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches.
    Gupta S; Basant N; Mohan D; Singh KP
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14034-46. PubMed ID: 27040550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning for predicting halogen radical reactivity toward aqueous organic chemicals.
    Liang Y; Huangfu X; Huang R; Han Z; Wu S; Wang J; Long X; Ma J; He Q
    J Hazard Mater; 2024 Jul; 472():134501. PubMed ID: 38735182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative structure activity relationships (QSARs) and machine learning models for abiotic reduction of organic compounds by an aqueous Fe(II) complex.
    Gao Y; Zhong S; Torralba-Sanchez TL; Tratnyek PG; Weber EJ; Chen Y; Zhang H
    Water Res; 2021 Mar; 192():116843. PubMed ID: 33494041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "
    Sanches-Neto FO; Dias-Silva JR; Keng Queiroz Junior LH; Carvalho-Silva VH
    Environ Sci Technol; 2021 Sep; 55(18):12437-12448. PubMed ID: 34473479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.
    Gupta S; Basant N; Mohan D; Singh KP
    SAR QSAR Environ Res; 2016 Jul; 27(7):539-58. PubMed ID: 27385532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods.
    Ai H; Wu X; Zhang L; Qi M; Zhao Y; Zhao Q; Zhao J; Liu H
    Ecotoxicol Environ Saf; 2019 Sep; 179():71-78. PubMed ID: 31026752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the rate constants of semivolatile organic compounds with hydroxyl radicals and ozone in indoor air.
    Wei W; Sivanantham S; Malingre L; Ramalho O; Mandin C
    Environ Pollut; 2020 Nov; 266(Pt 2):115050. PubMed ID: 32652384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling adsorption of organic pollutants onto single-walled carbon nanotubes with theoretical molecular descriptors using MLR and SVM algorithms.
    Wang Y; Chen J; Tang W; Xia D; Liang Y; Li X
    Chemosphere; 2019 Jan; 214():79-84. PubMed ID: 30261420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting reactivity dynamics of halogen species and trace organic contaminants using machine learning models.
    Zhu J; Huang Y; Yi Q; Bu L; Zhou S; Shi Z
    Chemosphere; 2024 Jan; 346():140659. PubMed ID: 37949193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a model for predicting hydroxyl radical reaction rate constants of organic chemicals at different temperatures.
    Li C; Yang X; Li X; Chen J; Qiao X
    Chemosphere; 2014 Jan; 95():613-8. PubMed ID: 24210594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors.
    Xia Z; Yan A
    Mol Divers; 2017 Aug; 21(3):661-675. PubMed ID: 28484935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of machine learning and deep learning methods for hydrated electron rate constant prediction.
    Zheng S; Guo W; Li C; Sun Y; Zhao Q; Lu H; Si Q; Wang H
    Environ Res; 2023 Aug; 231(Pt 1):115996. PubMed ID: 37105290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive models for the aqueous phase reactivity of inorganic radicals with organic micropollutants.
    Wang P; Bu L; Zhou S; Wu Y; Deng L; Shi Z
    Chemosphere; 2023 Aug; 332():138793. PubMed ID: 37119929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-Based Reaction Descriptors for Predicting Rate Constants by Machine Learning: Application to Hydrogen Abstraction from Alkanes by CH
    Zhang Y; Yu J; Song H; Yang M
    J Chem Inf Model; 2023 Aug; 63(16):5097-5106. PubMed ID: 37561569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Structure-Activity Relationships of Aquatic Narcosis: A Review.
    Adhikari C; Mishra BK
    Curr Comput Aided Drug Des; 2018; 14(1):7-28. PubMed ID: 28699497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of reaction rate constants of hydroxyl radical with chemicals in water.
    Yu X; Liu J
    Water Environ Res; 2021 Jun; 93(6):934-939. PubMed ID: 33249688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing random forest based QSAR models for predicting the mixture toxicity of TiO
    Trinh TX; Seo M; Yoon TH; Kim J
    NanoImpact; 2022 Jan; 25():100383. PubMed ID: 35559889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.