These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37951435)

  • 21. Self-healable nanocellulose composite hydrogels combining multiple dynamic bonds for drug delivery.
    Wang F; Huang K; Xu Z; Shi F; Chen C
    Int J Biol Macromol; 2022 Apr; 203():143-152. PubMed ID: 35077746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermoresponsive and Injectable Composite Hydrogels of Cellulose Nanocrystals and Pluronic F127.
    Kushan E; Senses E
    ACS Appl Bio Mater; 2021 Apr; 4(4):3507-3517. PubMed ID: 35014435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of copper(II) using deacetylated konjac glucomannan conjugated soy protein isolate.
    Liu F; Zou H; Peng J; Hu J; Liu H; Chen Y; Lu F
    Int J Biol Macromol; 2016 May; 86():338-44. PubMed ID: 26826287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin.
    Hujaya SD; Lorite GS; Vainio SJ; Liimatainen H
    Acta Biomater; 2018 Jul; 75():346-357. PubMed ID: 29885527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiochemical characteristics and sensory properties of plant protein isolates-konjac glucomannan compound gels.
    Yao Y; He W; Xu B
    Food Sci Nutr; 2023 Sep; 11(9):5063-5077. PubMed ID: 37701223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanocellulose-based hydrogels as versatile drug delivery vehicles: A review.
    He P; Dai L; Wei J; Zhu X; Li J; Chen Z; Ni Y
    Int J Biol Macromol; 2022 Dec; 222(Pt A):830-843. PubMed ID: 36179866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of molecular characteristics of Konjac glucomannan on gelling and rheological properties of Tilapia myofibrillar protein.
    Jian W; Wu H; Wu L; Wu Y; Jia L; Pang J; Sun YM
    Carbohydr Polym; 2016 Oct; 150():21-31. PubMed ID: 27312609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and evaluation of
    Shang J; Duan L; Zhang W; Li X; Ma C; Xin B
    J Appl Biomater Funct Mater; 2023; 21():22808000231176202. PubMed ID: 37798869
    [No Abstract]   [Full Text] [Related]  

  • 29. Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films.
    Martelli-Tosi M; Masson MM; Silva NC; Esposto BS; Barros TT; Assis OBG; Tapia-Blácido DR
    Carbohydr Polym; 2018 Oct; 198():61-68. PubMed ID: 30093040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rheological properties and formation mechanism of DC electric fields induced konjac glucomannan-tungsten gels.
    Wang L; Jiang Y; Lin Y; Pang J; Liu XY
    Carbohydr Polym; 2016 May; 142():293-9. PubMed ID: 26917402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using nanocellulose to improve heat-induced cull cow meat myofibrillar protein gels: effects of particle morphology and content.
    Shen R; Tian X; Yang Q; Zhang K; Zhang H; Wang X; Bai L; Wang W
    J Sci Food Agric; 2023 Dec; 103(15):7550-7559. PubMed ID: 37410998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergistic Reinforcing Mechanisms in Cellulose Nanofibrils Composite Hydrogels: Interfacial Dynamics, Energy Dissipation, and Damage Resistance.
    Yang J; Xu F
    Biomacromolecules; 2017 Aug; 18(8):2623-2632. PubMed ID: 28686432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering nanocellulose hydrogels for biomedical applications.
    Curvello R; Raghuwanshi VS; Garnier G
    Adv Colloid Interface Sci; 2019 May; 267():47-61. PubMed ID: 30884359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of silylated nano cellulose reinforcement on the mechanical, water resistance, thermal, morphological and antibacterial properties of soy protein isolate (SPI)-based composite films.
    Chetia P; Bharadwaj C; Purbey R; Bora D; Yadav A; Lal M; Rajulu AV; Sadiku ER; Selvam SP; Jarugala J
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124861. PubMed ID: 37192712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of soy protein isolate/cellulose nanocrystal composite nanoparticles for curcumin delivery.
    Wang S; Lu Y; Ouyang XK; Ling J
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1468-1474. PubMed ID: 33058971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. All-natural and biocompatible cellulose nanocrystals films with tunable supramolecular structure.
    Chen J; Ren Y; Liu W; Wang T; Chen F; Ling Z; Yong Q
    Int J Biol Macromol; 2021 Dec; 193(Pt B):1324-1331. PubMed ID: 34742850
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gel properties and formation mechanism of soy protein isolate gels improved by wheat bran cellulose.
    Xiao Y; Li J; Liu Y; Peng F; Wang X; Wang C; Li M; Xu H
    Food Chem; 2020 Sep; 324():126876. PubMed ID: 32361092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and Properties of Salecan-Soy Protein Isolate Composite Hydrogel Induced by Thermal Treatment and Transglutaminase.
    Gan J; Sun L; Guan C; Ren T; Zhang Q; Pan S; Zhang Q; Chen H
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of transparent PMMA-cellulose-based nanocomposites.
    Kiziltas EE; Kiziltas A; Bollin SC; Gardner DJ
    Carbohydr Polym; 2015; 127():381-9. PubMed ID: 25965497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and characterization of konjac glucomannan and gum arabic composite gel.
    Li Z; Zhang L; Mao C; Song Z; Li X; Liu C
    Int J Biol Macromol; 2021 Jul; 183():2121-2130. PubMed ID: 34087301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.