BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37951485)

  • 1. SIMPLEX: Multiple phase-cycled bSSFP quantitative magnetization transfer imaging with physic-guided simulation learning of neural network.
    Luu HM; Park SH
    Neuroimage; 2023 Dec; 284():120449. PubMed ID: 37951485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. qMTNet: Accelerated quantitative magnetization transfer imaging with artificial neural networks.
    Luu HM; Kim DH; Kim JW; Choi SH; Park SH
    Magn Reson Med; 2021 Jan; 85(1):298-308. PubMed ID: 32643202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid framework for quantitative magnetization transfer imaging with interslice magnetization transfer and dictionary-driven fitting approaches.
    Kim JW; Lee SL; Choi SH; Park SH
    Magn Reson Med; 2019 Nov; 82(5):1671-1683. PubMed ID: 31183887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of normal appearing brain structures using high-resolution quantitative magnetization transfer steady-state free precession imaging.
    Garcia M; Gloor M; Wetzel SG; Radue EW; Scheffler K; Bieri O
    Neuroimage; 2010 Aug; 52(2):532-7. PubMed ID: 20430101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast high-resolution brain imaging with balanced SSFP: Interpretation of quantitative magnetization transfer towards simple MTR.
    Garcia M; Gloor M; Radue EW; Stippich Ch; Wetzel SG; Scheffler K; Bieri O
    Neuroimage; 2012 Jan; 59(1):202-11. PubMed ID: 21820061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-parametric artificial neural network fitting of phase-cycled balanced steady-state free precession data.
    Heule R; Bause J; Pusterla O; Scheffler K
    Magn Reson Med; 2020 Dec; 84(6):2981-2993. PubMed ID: 32479661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural network for suppression of banding artifacts in balanced steady-state free precession MRI.
    Kim KH; Park SH
    Magn Reson Imaging; 2017 Apr; 37():139-146. PubMed ID: 27899332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid, high-resolution quantitative magnetization transfer MRI of the human spinal cord.
    Smith AK; Dortch RD; Dethrage LM; Smith SA
    Neuroimage; 2014 Jul; 95():106-16. PubMed ID: 24632465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PLANET: An ellipse fitting approach for simultaneous T
    Shcherbakova Y; van den Berg CAT; Moonen CTW; Bartels LW
    Magn Reson Med; 2018 Feb; 79(2):711-722. PubMed ID: 28543430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MR-self Noise2Noise: self-supervised deep learning-based image quality improvement of submillimeter resolution 3D MR images.
    Jung W; Lee HS; Seo M; Nam Y; Choi Y; Shin NY; Ahn KJ; Kim BS; Jang J
    Eur Radiol; 2023 Apr; 33(4):2686-2698. PubMed ID: 36378250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data.
    Yaman B; Hosseini SAH; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    Magn Reson Med; 2020 Dec; 84(6):3172-3191. PubMed ID: 32614100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data.
    Moya-Sáez E; Peña-Nogales Ó; Luis-García R; Alberola-López C
    Comput Methods Programs Biomed; 2021 Oct; 210():106371. PubMed ID: 34525411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid quantitative magnetization transfer imaging: Utilizing the hybrid state and the generalized Bloch model.
    Assländer J; Gultekin C; Mao A; Zhang X; Duchemin Q; Liu K; Charlson RW; Shepherd TM; Fernandez-Granda C; Flassbeck S
    Magn Reson Med; 2024 Apr; 91(4):1478-1497. PubMed ID: 38073093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal analysis of new multiple sclerosis lesions with magnetization transfer and diffusion tensor imaging.
    Gloor M; Andelova M; Gaetano L; Papadopoulou A; Burguet Villena F; Sprenger T; Radue EW; Kappos L; Bieri O; Garcia M
    Eur Radiol; 2024 Mar; 34(3):1680-1691. PubMed ID: 37658894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation-based quantification of native T1 and T2 of the myocardium using a modified MOLLI scheme and the importance of Magnetization Transfer.
    Xanthis CG; Bidhult S; Greiser A; Chow K; Thompson RB; Arheden H; Aletras AH
    Magn Reson Imaging; 2018 May; 48():96-106. PubMed ID: 29288037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPINNED: Simulation-based physics-informed neural network for deconvolution of dynamic susceptibility contrast MRI perfusion data.
    Asaduddin M; Kim EY; Park SH
    Magn Reson Med; 2024 Sep; 92(3):1205-1218. PubMed ID: 38623911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalizable synthetic MRI with physics-informed convolutional networks.
    Jacobs L; Mandija S; Liu H; van den Berg CAT; Sbrizzi A; Maspero M
    Med Phys; 2024 May; 51(5):3348-3359. PubMed ID: 38063208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging of Primary Brain Tumors and Metastases with Fast Quantitative 3-Dimensional Magnetization Transfer.
    Garcia M; Gloor M; Bieri O; Radue EW; Lieb JM; Cordier D; Stippich C
    J Neuroimaging; 2015; 25(6):1007-14. PubMed ID: 25702714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transceive phase mapping using the PLANET method and its application for conductivity mapping in the brain.
    Gavazzi S; Shcherbakova Y; Bartels LW; Stalpers LJA; Lagendijk JJW; Crezee H; van den Berg CAT; van Lier ALHMW
    Magn Reson Med; 2020 Feb; 83(2):590-607. PubMed ID: 31483520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.