BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37951526)

  • 1. The use of sterol profiles, supported with other faecal source tracking methods, to apportion septic tanks contamination in rural catchments.
    Dubber D; Brophy L; O'Connell D; Behan P; Danaher M; Evans C; Geary P; Misstear B; Gill L
    Environ Pollut; 2024 Jan; 341():122884. PubMed ID: 37951526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suitability of fluorescent whitening compounds (FWCs) as indicators of human faecal contamination from septic tanks in rural catchments.
    Dubber D; Gill LW
    Water Res; 2017 Dec; 127():104-117. PubMed ID: 29035764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An assessment of contamination fingerprinting techniques for determining the impact of domestic wastewater treatment systems on private well supplies.
    Fennell C; Misstear B; O'Connell D; Dubber D; Behan P; Danaher M; Moloney M; Gill L
    Environ Pollut; 2021 Jan; 268(Pt B):115687. PubMed ID: 33032246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential tracers for tracking septic tank effluent discharges in watercourses.
    Richards S; Withers PJA; Paterson E; McRoberts CW; Stutter M
    Environ Pollut; 2017 Sep; 228():245-255. PubMed ID: 28550797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying avian sources of faecal contamination using sterol analysis.
    Devane ML; Wood D; Chappell A; Robson B; Webster-Brown J; Gilpin BJ
    Environ Monit Assess; 2015 Oct; 187(10):625. PubMed ID: 26370196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of chemical and molecular microbial indicators for faecal source identification.
    Gilpin B; James T; Nourozi F; Saunders D; Scholes P; Savill M
    Water Sci Technol; 2003; 47(3):39-43. PubMed ID: 12639003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the source of faecal pollution in contaminated rivers.
    Glipin BJ; Gregor JE; Savill MG
    Water Sci Technol; 2002; 46(3):9-15. PubMed ID: 12227609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial source tracking from diverse land use catchments by sterol ratios.
    Shah VG; Hugh Dunstan R; Geary PM; Coombes P; Roberts TK; Rothkirch T
    Water Res; 2007 Aug; 41(16):3667-74. PubMed ID: 17433407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and biological tracers to identify source and transport pathways of septic system contamination to streams in areas with low permeability soils.
    Digaletos M; Ptacek CJ; Thomas J; Liu Y
    Sci Total Environ; 2023 Apr; 870():161866. PubMed ID: 36709906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated analysis of water quality parameters for cost-effective faecal pollution management in river catchments.
    Nnane DE; Ebdon JE; Taylor HD
    Water Res; 2011 Mar; 45(6):2235-46. PubMed ID: 21324505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemometric approach to validating faecal sterols as source tracer for faecal contamination in water.
    Saim N; Osman R; Sari Abg Spian DR; Jaafar MZ; Juahir H; Abdullah MP; Ghani FA
    Water Res; 2009 Dec; 43(20):5023-30. PubMed ID: 19896157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Faecal contamination of source-separated human urine based on the content of faecal sterols.
    Schönning C; Leeming R; Stenström TA
    Water Res; 2002 Apr; 36(8):1965-72. PubMed ID: 12092571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of faecal pollutants in Torrens and Patawalonga catchment waters in South Australia using faecal sterols.
    Suprihatin I; Fallowfield H; Bentham R; Cromar N
    Water Sci Technol; 2003; 47(7-8):283-9. PubMed ID: 12793691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Faecal sterols analysis for the identification of human faecal pollution in a non-sewered catchment.
    Sullivan D; Brooks P; Tindale N; Chapman S; Ahmed W
    Water Sci Technol; 2010; 61(5):1355-61. PubMed ID: 20220257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contamination of estuaries from failing septic tank systems: difficulties in scaling up from monitored individual systems to cumulative impact.
    Geary P; Lucas S
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2132-2144. PubMed ID: 29397513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating potential applications of faecal sterols in distinguishing sources of faecal contamination from mixed faecal samples.
    Shah VG; Dunstan RH; Geary PM; Coombes P; Roberts TK; Von Nagy-Felsobuki E
    Water Res; 2007 Aug; 41(16):3691-700. PubMed ID: 17614115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative catchment profiling to apportion faecal indicator organism budgets for the Ribble system, the UK's sentinel drainage basin for Water Framework Directive research.
    Stapleton CM; Wyer MD; Crowther J; McDonald AT; Kay D; Greaves J; Wither A; Watkins J; Francis C; Humphrey N; Bradford M
    J Environ Manage; 2008 Jun; 87(4):535-50. PubMed ID: 18082929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pepper mild mottle virus as an effective tool in microbial source tracking for deficient domestic on-site water treatment systems.
    Monleon AJC; Gill LW
    Sci Total Environ; 2024 Aug; 939():173229. PubMed ID: 38763202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial source tracking and shellfish contamination in a coastal catchment.
    Geary PM; Davies CM
    Water Sci Technol; 2003; 47(7-8):95-100. PubMed ID: 12793667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the sources of low-flow phosphorus transfers in complex catchments.
    Arnscheidt J; Jordan P; Li S; McCormick S; McFaul R; McGrogan HJ; Neal M; Sims JT
    Sci Total Environ; 2007 Aug; 382(1):1-13. PubMed ID: 17512972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.