These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37951785)

  • 1. Limits on scalar-induced gravitational waves from the stochastic background by pulsar timing array observations.
    Cai YF; He XC; Ma XH; Yan SF; Yuan GW
    Sci Bull (Beijing); 2023 Dec; 68(23):2929-2935. PubMed ID: 37951785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cosmological Background Interpretation of Pulsar Timing Array Data.
    Figueroa DG; Pieroni M; Ricciardone A; Simakachorn P
    Phys Rev Lett; 2024 Apr; 132(17):171002. PubMed ID: 38728738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dataset.
    Chen ZC; Yuan C; Huang QG
    Phys Rev Lett; 2020 Jun; 124(25):251101. PubMed ID: 32639789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays.
    Taylor SR; Simon J; Sampson L
    Phys Rev Lett; 2017 May; 118(18):181102. PubMed ID: 28524688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cosmic String Interpretation of NANOGrav Pulsar Timing Data.
    Ellis J; Lewicki M
    Phys Rev Lett; 2021 Jan; 126(4):041304. PubMed ID: 33576656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Anisotropies of the Stochastic Gravitational Wave Background from Cosmic Domain Walls.
    Liu J; Cai RG; Guo ZK
    Phys Rev Lett; 2021 Apr; 126(14):141303. PubMed ID: 33891446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.
    Mingarelli CM; Grover K; Sidery T; Smith RJ; Vecchio A
    Phys Rev Lett; 2012 Aug; 109(8):081104. PubMed ID: 23002736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Gravitational Wave Observation by Pulsar Timing Arrays and Primordial Black Holes: The Importance of Non-Gaussianities.
    Franciolini G; Iovino AJ; Vaskonen V; Veermäe H
    Phys Rev Lett; 2023 Nov; 131(20):201401. PubMed ID: 38039467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can Supercooled Phase Transitions Explain the Gravitational Wave Background Observed by Pulsar Timing Arrays?
    Athron P; Fowlie A; Lu CT; Morris L; Wu L; Wu Y; Xu Z
    Phys Rev Lett; 2024 May; 132(22):221001. PubMed ID: 38877954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NANOGrav Data Hints at Primordial Black Holes as Dark Matter.
    De Luca V; Franciolini G; Riotto A
    Phys Rev Lett; 2021 Jan; 126(4):041303. PubMed ID: 33576658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Large-Scale, Targeted Gravitational-Wave Probes of Supermassive Black-Hole Binaries.
    Charisi M; Taylor SR; Witt CA; Runnoe J
    Phys Rev Lett; 2024 Feb; 132(6):061401. PubMed ID: 38394573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background.
    Taylor SR; Mingarelli CM; Gair JR; Sesana A; Theureau G; Babak S; Bassa CG; Brem P; Burgay M; Caballero RN; Champion DJ; Cognard I; Desvignes G; Guillemot L; Hessels JW; Janssen GH; Karuppusamy R; Kramer M; Lassus A; Lazarus P; Lentati L; Liu K; Osłowski S; Perrodin D; Petiteau A; Possenti A; Purver MB; Rosado PA; Sanidas SA; Smits R; Stappers B; Tiburzi C; van Haasteren R; Vecchio A; Verbiest JP;
    Phys Rev Lett; 2015 Jul; 115(4):041101. PubMed ID: 26252674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parameter estimation in searches for the stochastic gravitational-wave background.
    Mandic V; Thrane E; Giampanis S; Regimbau T
    Phys Rev Lett; 2012 Oct; 109(17):171102. PubMed ID: 23215172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gravitational-wave limits from pulsar timing constrain supermassive black hole evolution.
    Shannon RM; Ravi V; Coles WA; Hobbs G; Keith MJ; Manchester RN; Wyithe JS; Bailes M; Bhat ND; Burke-Spolaor S; Khoo J; Levin Y; Osłowski S; Sarkissian JM; van Straten W; Verbiest JP; Wang JB
    Science; 2013 Oct; 342(6156):334-7. PubMed ID: 24136962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Footprints of the QCD Crossover on Cosmological Gravitational Waves at Pulsar Timing Arrays.
    Franciolini G; Racco D; Rompineve F
    Phys Rev Lett; 2024 Feb; 132(8):081001. PubMed ID: 38457711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravitational waves from binary supermassive black holes missing in pulsar observations.
    Shannon RM; Ravi V; Lentati LT; Lasky PD; Hobbs G; Kerr M; Manchester RN; Coles WA; Levin Y; Bailes M; Bhat ND; Burke-Spolaor S; Dai S; Keith MJ; Osłowski S; Reardon DJ; van Straten W; Toomey L; Wang JB; Wen L; Wyithe JS; Zhu XJ
    Science; 2015 Sep; 349(6255):1522-5. PubMed ID: 26404832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constraining Cosmological Phase Transitions with the Parkes Pulsar Timing Array.
    Xue X; Bian L; Shu J; Yuan Q; Zhu X; Bhat NDR; Dai S; Feng Y; Goncharov B; Hobbs G; Howard E; Manchester RN; Russell CJ; Reardon DJ; Shannon RM; Spiewak R; Thyagarajan N; Wang J
    Phys Rev Lett; 2021 Dec; 127(25):251303. PubMed ID: 35029430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-Order Phase Transition Interpretation of Pulsar Timing Array Signal Is Consistent with Solar-Mass Black Holes.
    Gouttenoire Y
    Phys Rev Lett; 2023 Oct; 131(17):171404. PubMed ID: 37955485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Did NANOGrav See a Signal from Primordial Black Hole Formation?
    Vaskonen V; Veermäe H
    Phys Rev Lett; 2021 Feb; 126(5):051303. PubMed ID: 33605761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New window into stochastic gravitational wave background.
    Rotti A; Souradeep T
    Phys Rev Lett; 2012 Nov; 109(22):221301. PubMed ID: 23368112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.