BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37951855)

  • 1. CT-derived pectoralis composition and incident pneumonia hospitalization using fully automated deep-learning algorithm: multi-ethnic study of atherosclerosis.
    Ibad HA; Hathaway QA; Bluemke DA; Kasaeian A; Klein JG; Budoff MJ; Barr RG; Allison M; Post WS; Lima JAC; Demehri S
    Eur Radiol; 2023 Nov; ():. PubMed ID: 37951855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive Value of Deep Learning-derived CT Pectoralis Muscle and Adipose Measurements for Incident Heart Failure: Multi-Ethnic Study of Atherosclerosis.
    Hathaway Q; Ibad HA; Bluemke DA; Pishgar F; Kasaiean A; Klein JG; Cogswell R; Allison M; Budoff MJ; Barr RG; Post W; Bredella MA; Lima JAC; Demehri S
    Radiol Cardiothorac Imaging; 2023 Oct; 5(5):e230146. PubMed ID: 37908549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative computed tomography measures of pectoralis muscle area and disease severity in chronic obstructive pulmonary disease. A cross-sectional study.
    McDonald ML; Diaz AA; Ross JC; San Jose Estepar R; Zhou L; Regan EA; Eckbo E; Muralidhar N; Come CE; Cho MH; Hersh CP; Lange C; Wouters E; Casaburi RH; Coxson HO; Macnee W; Rennard SI; Lomas DA; Agusti A; Celli BR; Black-Shinn JL; Kinney GL; Lutz SM; Hokanson JE; Silverman EK; Washko GR
    Ann Am Thorac Soc; 2014 Mar; 11(3):326-34. PubMed ID: 24558953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Analysis of Adipose Depots by Using Chest CT and Associations with All-Cause Mortality in Chronic Obstructive Pulmonary Disease: Longitudinal Analysis from MESArthritis Ancillary Study.
    Pishgar F; Shabani M; Quinaglia A C Silva T; Bluemke DA; Budoff M; Barr RG; Allison MA; Post WS; Lima JAC; Demehri S
    Radiology; 2021 Jun; 299(3):703-711. PubMed ID: 33825508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computed tomography-derived area and density of pectoralis muscle associated disease severity and longitudinal changes in chronic obstructive pulmonary disease: a case control study.
    Bak SH; Kwon SO; Han SS; Kim WJ
    Respir Res; 2019 Oct; 20(1):226. PubMed ID: 31638996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utility of Normalized Body Composition Areas, Derived From Outpatient Abdominal CT Using a Fully Automated Deep Learning Method, for Predicting Subsequent Cardiovascular Events.
    Magudia K; Bridge CP; Bay CP; Farah S; Babic A; Fintelmann FJ; Brais LK; Andriole KP; Wolpin BM; Rosenthal MH
    AJR Am J Roentgenol; 2023 Feb; 220(2):236-244. PubMed ID: 36043607
    [No Abstract]   [Full Text] [Related]  

  • 7. Cardiovascular Autonomic Function and Incident Chronic Obstructive Pulmonary Disease Hospitalizations in Atherosclerosis Risk in Communities.
    MacDonald DM; Ji Y; Adabag S; Alonso A; Chen LY; Henkle BE; Juraschek SP; Norby FL; Lutsey PL; Kunisaki KM
    Ann Am Thorac Soc; 2023 Oct; 20(10):1435-1444. PubMed ID: 37364277
    [No Abstract]   [Full Text] [Related]  

  • 8. Fully-automated sarcopenia assessment in head and neck cancer: development and external validation of a deep learning pipeline.
    Ye Z; Saraf A; Ravipati Y; Hoebers F; Zha Y; Zapaishchykova A; Likitlersuang J; Tishler RB; Schoenfeld JD; Margalit DN; Haddad RI; Mak RH; Naser M; Wahid KA; Sahlsten J; Jaskari J; Kaski K; Mäkitie AA; Fuller CD; Aerts HJWL; Kann BH
    medRxiv; 2023 Mar; ():. PubMed ID: 36945519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smaller Left Ventricle Size at Noncontrast CT Is Associated with Lower Mortality in COPDGene Participants.
    Washko GR; Nardelli P; Ash SY; Rahaghi FN; Vegas Sanchez-Ferrero G; Come CE; Dransfield MT; Kalhan R; Han MK; Bhatt SP; Wells JM; Pistenmaa CL; Diaz AA; Ross JC; Rennard S; Querejeta Roca G; Shah AM; Young K; Kinney GL; Hokanson JE; Agustí A; San José Estépar R;
    Radiology; 2020 Jul; 296(1):208-215. PubMed ID: 32368963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Assessment of Erector Spinae Muscles in Patients with Chronic Obstructive Pulmonary Disease. Novel Chest Computed Tomography-derived Index for Prognosis.
    Tanimura K; Sato S; Fuseya Y; Hasegawa K; Uemasu K; Sato A; Oguma T; Hirai T; Mishima M; Muro S
    Ann Am Thorac Soc; 2016 Mar; 13(3):334-41. PubMed ID: 26700501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of pectoralis muscle area on computed tomography with airflow limitation severity and respiratory outcomes in COPD: A population-based prospective cohort study.
    Zhou K; Wu F; Zhao N; Zheng Y; Deng Z; Yang H; Wen X; Xiao S; Yang C; Chen S; Zhou Y; Ran P;
    Pulmonology; 2023 Mar; ():. PubMed ID: 36907812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population-Scale CT-based Body Composition Analysis of a Large Outpatient Population Using Deep Learning to Derive Age-, Sex-, and Race-specific Reference Curves.
    Magudia K; Bridge CP; Bay CP; Babic A; Fintelmann FJ; Troschel FM; Miskin N; Wrobel WC; Brais LK; Andriole KP; Wolpin BM; Rosenthal MH
    Radiology; 2021 Feb; 298(2):319-329. PubMed ID: 33231527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and staging of chronic obstructive pulmonary disease using a computed tomography-based weakly supervised deep learning approach.
    Sun J; Liao X; Yan Y; Zhang X; Sun J; Tan W; Liu B; Wu J; Guo Q; Gao S; Li Z; Wang K; Li Q
    Eur Radiol; 2022 Aug; 32(8):5319-5329. PubMed ID: 35201409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fully automated pipeline for the extraction of pectoralis muscle area from chest computed tomography scans.
    Genkin D; Jenkins AR; van Noord N; Makimoto K; Collins S; Stickland MK; Tan WC; Bourbeau J; Jensen D; Kirby M
    ERJ Open Res; 2024 Jan; 10(1):. PubMed ID: 38259805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CT Attenuation and Cross-Sectional Area of the Pectoralis Are Associated With Clinical Characteristics in Chronic Obstructive Pulmonary Disease Patients.
    Qiao X; Hou G; Kang J; Wang QY; Yin Y
    Front Physiol; 2022; 13():833796. PubMed ID: 35721549
    [No Abstract]   [Full Text] [Related]  

  • 17. CT-Derived Deep Learning-Based Quantification of Body Composition Associated with Disease Severity in Chronic Obstructive Pulmonary Disease.
    Song JE; Bak SH; Lim MN; Lee EJ; Cha YK; Yoon HJ; Kim WJ
    J Korean Soc Radiol; 2023 Sep; 84(5):1123-1133. PubMed ID: 37869106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully Automated Deep Learning Tool for Sarcopenia Assessment on CT: L1 Versus L3 Vertebral Level Muscle Measurements for Opportunistic Prediction of Adverse Clinical Outcomes.
    Pickhardt PJ; Perez AA; Garrett JW; Graffy PM; Zea R; Summers RM
    AJR Am J Roentgenol; 2022 Jan; 218(1):124-131. PubMed ID: 34406056
    [No Abstract]   [Full Text] [Related]  

  • 19. Research on Pectoral Muscle Segmentation Algorithm of CT Image Based on Deep Learning.
    Wang Y; Zhou P; Zhao X
    Stud Health Technol Inform; 2023 Nov; 308():207-215. PubMed ID: 38007742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based pectoralis muscle volume segmentation method from chest computed tomography image using sagittal range detection and axial slice-based segmentation.
    Yang Z; Choi I; Choi J; Jung J; Ryu M; Yong HS
    PLoS One; 2023; 18(9):e0290950. PubMed ID: 37669295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.