These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37952012)

  • 1. Data-driven discovery of electrocatalysts for CO
    Mok DH; Li H; Zhang G; Lee C; Jiang K; Back S
    Nat Commun; 2023 Nov; 14(1):7303. PubMed ID: 37952012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure- and Electrolyte-Sensitivity in CO
    Arán-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the mechanistic role of alloying elements in copper-based electrocatalysts for the reduction of carbon dioxide to methane.
    Hao M; Duan B; Leng G; Liu J; Li S; Wang S; Qu J
    Front Chem; 2023; 11():1235552. PubMed ID: 37608864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-Learning-Guided Discovery and Optimization of Additives in Preparing Cu Catalysts for CO
    Guo Y; He X; Su Y; Dai Y; Xie M; Yang S; Chen J; Wang K; Zhou D; Wang C
    J Am Chem Soc; 2021 Apr; 143(15):5755-5762. PubMed ID: 33843221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic Cu Sites Engineering Enables Efficient CO
    Li M; Zhang F; Kuang M; Ma Y; Liao T; Sun Z; Luo W; Jiang W; Yang J
    Nanomicro Lett; 2023 Oct; 15(1):238. PubMed ID: 37882895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guiding CO
    Banerjee S; Gerke CS; Thoi VS
    Acc Chem Res; 2022 Feb; 55(4):504-515. PubMed ID: 35119260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Considering the Influence of Polymer-Catalyst Interactions on the Chemical Microenvironment of Electrocatalysts for the CO
    Soucy TL; Dean WS; Zhou J; Rivera Cruz KE; McCrory CCL
    Acc Chem Res; 2022 Feb; 55(3):252-261. PubMed ID: 35044745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking heterogeneous structural motifs and the redox behaviour of copper-zinc nanocatalysts for the electrocatalytic CO
    Rüscher M; Herzog A; Timoshenko J; Jeon HS; Frandsen W; Kühl S; Roldan Cuenya B
    Catal Sci Technol; 2022 May; 12(9):3028-3043. PubMed ID: 35662799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cutting-Edge Electrocatalysts for CO
    Jeyachandran N; Yuan W; Giordano C
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical and Structural Evolution of AgCu Catalysts in Electrochemical CO
    Chen PC; Chen C; Yang Y; Maulana AL; Jin J; Feijoo J; Yang P
    J Am Chem Soc; 2023 May; 145(18):10116-10125. PubMed ID: 37115017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-Learning-Accelerated Catalytic Activity Predictions of Transition Metal Phthalocyanine Dual-Metal-Site Catalysts for CO
    Wan X; Zhang Z; Niu H; Yin Y; Kuai C; Wang J; Shao C; Guo Y
    J Phys Chem Lett; 2021 Jul; 12(26):6111-6118. PubMed ID: 34170687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional MBene: a comparable catalyst to MXene for effective CO
    Lu X; Hu Y; Cao S; Li J; Yang C; Chen Z; Wei S; Liu S; Wang Z
    Phys Chem Chem Phys; 2023 Jul; 25(28):18952-18959. PubMed ID: 37409409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectivity in Electrochemical CO
    Saha P; Amanullah S; Dey A
    Acc Chem Res; 2022 Jan; 55(2):134-144. PubMed ID: 34989553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective electrochemical reduction of CO
    Badawy IM; Ismail AM; Khedr GE; Taha MM; Allam NK
    Sci Rep; 2022 Aug; 12(1):13456. PubMed ID: 35931804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Customizing catalyst surface/interface structures for electrochemical CO
    Tan X; Zhu H; He C; Zhuang Z; Sun K; Zhang C; Chen C
    Chem Sci; 2024 Mar; 15(12):4292-4312. PubMed ID: 38516078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active Learning Accelerating to Screen Dual-Metal-Site Catalysts for Electrochemical Carbon Dioxide Reduction Reaction.
    Ding H; Shi Y; Li Z; Wang S; Liang Y; Feng H; Deng Y; Song X; Pu P; Zhang X
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):12986-12997. PubMed ID: 36853996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Investigation of Active Sites for electrochemical CO
    Zou Y; Wang S
    Adv Sci (Weinh); 2021 May; 8(9):2003579. PubMed ID: 33977051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Carbon Dioxide Reduction to Ethylene: From Mechanistic Understanding to Catalyst Surface Engineering.
    Qu J; Cao X; Gao L; Li J; Li L; Xie Y; Zhao Y; Zhang J; Wu M; Liu H
    Nanomicro Lett; 2023 Jul; 15(1):178. PubMed ID: 37433948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the Nanostructured Zn/Cu Electrocatalyst Morphology on the Electrochemical Reduction of CO
    Pinthong P; Klongklaew P; Praserthdam P; Panpranot J
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34202039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress on Perovskite-Based Electrocatalysts for Efficient CO
    Wu T; Zhang L; Zhan Y; Dong Y; Tan Z; Zhou B; Wei F; Zhang D; Long X
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.