BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37952182)

  • 1. cellsig plug-in enhances CIBERSORTx signature selection for multidataset transcriptomes with sparse multilevel modelling.
    Al Kamran Khan MA; Wu J; Sun Y; Barrow AD; Papenfuss AT; Mangiola S
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 37952182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-specific deconvolution of immune cell composition by integrating bulk and single-cell transcriptomes.
    Chen Z; Ji C; Shen Q; Liu W; Qin FX; Wu A
    Bioinformatics; 2020 Feb; 36(3):819-827. PubMed ID: 31504185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous pseudobulk simulation enables realistic benchmarking of cell-type deconvolution methods.
    Hu M; Chikina M
    Genome Biol; 2024 Jul; 25(1):169. PubMed ID: 38956606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy.
    Deng W; Li B; Wang J; Jiang W; Yan X; Li N; Vukmirovic M; Kaminski N; Wang J; Zhao H
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD).
    Chiu YJ; Ni CE; Huang YH
    BMC Med Genomics; 2023 Oct; 16(Suppl 2):272. PubMed ID: 37907883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes.
    Iida K; Kondo J; Wibisana JN; Inoue M; Okada M
    Bioinformatics; 2022 Sep; 38(18):4330-4336. PubMed ID: 35924984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling.
    Song D; Li K; Hemminger Z; Wollman R; Li JJ
    Bioinformatics; 2021 Jul; 37(Suppl_1):i358-i366. PubMed ID: 34252925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imputing dropouts for single-cell RNA sequencing based on multi-objective optimization.
    Jin K; Li B; Yan H; Zhang XF
    Bioinformatics; 2022 Jun; 38(12):3222-3230. PubMed ID: 35485740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling Cell Type Abundance and Expression in Bulk Tissues with CIBERSORTx.
    Steen CB; Liu CL; Alizadeh AA; Newman AM
    Methods Mol Biol; 2020; 2117():135-157. PubMed ID: 31960376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets.
    Liu H; Li H; Sharma A; Huang W; Pan D; Gu Y; Lin L; Sun X; Liu H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37183449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data.
    Andrade Barbosa B; van Asten SD; Oh JW; Farina-Sarasqueta A; Verheij J; Dijk F; van Laarhoven HWM; Ylstra B; Garcia Vallejo JJ; van de Wiel MA; Kim Y
    Nat Commun; 2021 Oct; 12(1):6106. PubMed ID: 34671028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. propeller: testing for differences in cell type proportions in single cell data.
    Phipson B; Sim CB; Porrello ER; Hewitt AW; Powell J; Oshlack A
    Bioinformatics; 2022 Oct; 38(20):4720-4726. PubMed ID: 36005887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining cell type abundance and expression from bulk tissues with digital cytometry.
    Newman AM; Steen CB; Liu CL; Gentles AJ; Chaudhuri AA; Scherer F; Khodadoust MS; Esfahani MS; Luca BA; Steiner D; Diehn M; Alizadeh AA
    Nat Biotechnol; 2019 Jul; 37(7):773-782. PubMed ID: 31061481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data.
    Fan J; Lyu Y; Zhang Q; Wang X; Li M; Xiao R
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical and automated cell-type annotation and inference of cancer cell of origin with Census.
    Ghaddar B; De S
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38011649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Omnibus and robust deconvolution scheme for bulk RNA sequencing data integrating multiple single-cell reference sets and prior biological knowledge.
    Chen C; Leung YY; Ionita M; Wang LS; Li M
    Bioinformatics; 2022 Sep; 38(19):4530-4536. PubMed ID: 35980155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainty-aware single-cell annotation with a hierarchical reject option.
    Theunissen L; Mortier T; Saeys Y; Waegeman W
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38441258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data.
    Kang K; Meng Q; Shats I; Umbach DM; Li M; Li Y; Li X; Li L
    PLoS Comput Biol; 2019 Dec; 15(12):e1007510. PubMed ID: 31790389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.