BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37952520)

  • 21. LAG3: a novel immune checkpoint expressed by multiple lymphocyte subsets in diffuse large B-cell lymphoma.
    Keane C; Law SC; Gould C; Birch S; Sabdia MB; Merida de Long L; Thillaiyampalam G; Abro E; Tobin JW; Tan X; Xu-Monette ZY; Young KH; Gifford G; Gabreilli S; Stevenson WS; Gill A; Talaulikar D; Jain S; Hernandez A; Halliday SJ; Bird R; Cross D; Hertzberg M; Gandhi MK
    Blood Adv; 2020 Apr; 4(7):1367-1377. PubMed ID: 32267932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LIGHT (TNFSF14) Costimulation Enhances Myeloid Cell Activation and Antitumor Immunity in the Setting of PD-1/PD-L1 and TIGIT Checkpoint Blockade.
    Yoo KJ; Johannes K; González LE; Patel A; Shuptrine CW; Opheim Z; Lenz K; Campbell K; Nguyen TA; Miriyala J; Smith C; McGuire A; Tsai YH; Rangwala F; de Silva S; Schreiber TH; Fromm G
    J Immunol; 2022 Aug; 209(3):510-525. PubMed ID: 35817517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stromal PD-L1-Positive Regulatory T cells and PD-1-Positive CD8-Positive T cells Define the Response of Different Subsets of Non-Small Cell Lung Cancer to PD-1/PD-L1 Blockade Immunotherapy.
    Wu SP; Liao RQ; Tu HY; Wang WJ; Dong ZY; Huang SM; Guo WB; Gou LY; Sun HW; Zhang Q; Xie Z; Yan LX; Su J; Yang JJ; Zhong WZ; Zhang XC; Wu YL
    J Thorac Oncol; 2018 Apr; 13(4):521-532. PubMed ID: 29269008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation of the TIGIT-PVR immune checkpoint axis with clinicopathological features in triple-negative breast cancer.
    Boissière-Michot F; Chateau MC; Thézenas S; Guiu S; Bobrie A; Jacot W
    Front Immunol; 2022; 13():1058424. PubMed ID: 36544779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution and prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 immune checkpoints in human brain metastases.
    Harter PN; Bernatz S; Scholz A; Zeiner PS; Zinke J; Kiyose M; Blasel S; Beschorner R; Senft C; Bender B; Ronellenfitsch MW; Wikman H; Glatzel M; Meinhardt M; Juratli TA; Steinbach JP; Plate KH; Wischhusen J; Weide B; Mittelbronn M
    Oncotarget; 2015 Dec; 6(38):40836-49. PubMed ID: 26517811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer.
    Fathi M; Pustokhina I; Kuznetsov SV; Khayrullin M; Hojjat-Farsangi M; Karpisheh V; Jalili A; Jadidi-Niaragh F
    IUBMB Life; 2021 May; 73(5):726-738. PubMed ID: 33686787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. T cells isolated from patients with checkpoint inhibitor-resistant melanoma are functional and can mediate tumor regression.
    Andersen R; Borch TH; Draghi A; Gokuldass A; Rana MAH; Pedersen M; Nielsen M; Kongsted P; Kjeldsen JW; Westergaard MCW; Radic HD; Chamberlain CA; Hölmich LR; Hendel HW; Larsen MS; Met Ö; Svane IM; Donia M
    Ann Oncol; 2018 Jul; 29(7):1575-1581. PubMed ID: 29688262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunologic heterogeneity of tumor-infiltrating lymphocyte composition in primary melanoma.
    Weiss SA; Han SW; Lui K; Tchack J; Shapiro R; Berman R; Zhong J; Krogsgaard M; Osman I; Darvishian F
    Hum Pathol; 2016 Nov; 57():116-125. PubMed ID: 27473267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PVRIG and PVRL2 Are Induced in Cancer and Inhibit CD8
    Whelan S; Ophir E; Kotturi MF; Levy O; Ganguly S; Leung L; Vaknin I; Kumar S; Dassa L; Hansen K; Bernados D; Murter B; Soni A; Taube JM; Fader AN; Wang TL; Shih IM; White M; Pardoll DM; Liang SC
    Cancer Immunol Res; 2019 Feb; 7(2):257-268. PubMed ID: 30659054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer.
    Kim K; Park S; Park SY; Kim G; Park SM; Cho JW; Kim DH; Park YM; Koh YW; Kim HR; Ha SJ; Lee I
    Genome Med; 2020 Feb; 12(1):22. PubMed ID: 32111241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules.
    Zhou G; Sprengers D; Mancham S; Erkens R; Boor PPC; van Beek AA; Doukas M; Noordam L; Campos Carrascosa L; de Ruiter V; van Leeuwen RWF; Polak WG; de Jonge J; Groot Koerkamp B; van Rosmalen B; van Gulik TM; Verheij J; IJzermans JNM; Bruno MJ; Kwekkeboom J
    J Hepatol; 2019 Oct; 71(4):753-762. PubMed ID: 31195061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct AKT activation in tumor-infiltrating lymphocytes markedly increases interferon-γ (IFN-γ) for the regression of tumors resistant to PD-1 checkpoint blockade.
    Santinon F; Ezzahra BF; Bachais M; Sarabia Pacis A; Rudd CE
    Sci Rep; 2022 Nov; 12(1):18509. PubMed ID: 36323740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of tumor-infiltrating lymphocytes (TILs) as a predictive biomarker of response to anti-PD1 therapy in patients with metastatic non-small cell lung cancer or metastatic melanoma.
    Uryvaev A; Passhak M; Hershkovits D; Sabo E; Bar-Sela G
    Med Oncol; 2018 Jan; 35(3):25. PubMed ID: 29388007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CTLA4 , PD-1 , PD-L1 , PD-L2 , TIM-3 , TIGIT , and LAG3 DNA Methylation Is Associated With BAP1 -Aberrancy, Transcriptional Activity, and Overall Survival in Uveal Melanoma.
    de Vos L; Carrillo Cano TM; Zarbl R; Klümper N; Ralser DJ; Franzen A; Herr E; Gabrielpillai J; Vogt TJ; Dietrich J; Strieth S; Landsberg J; Dietrich D
    J Immunother; 2022 Sep; 45(7):324-334. PubMed ID: 35862127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Profile and immune environment of upper tract urothelial carcinoma].
    Gallon J; LeMaoult J; Verine J; Dumont C; Djouadou M; Carosella E; Rouass-Freiss N; Desgrandchamps F; Masson-Lecomte A
    Prog Urol; 2023 Dec; 33(15-16):983-992. PubMed ID: 37872060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and validation of a novel survival prediction model based on the T-cell phenotype in the tumor immune microenvironment and peripheral blood for gastric cancer prognosis.
    Ma J; Li J; He N; Qian M; Lu Y; Wang X; Wu K
    J Transl Med; 2023 Feb; 21(1):73. PubMed ID: 36737759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TIGIT, A Novel Therapeutic Target for Tumor Immunotherapy.
    Liu XG; Hou M; Liu Y
    Immunol Invest; 2017 Feb; 46(2):172-182. PubMed ID: 27819527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of the immune checkpoint receptors PD-1, LAG3, and TIM3 in the immune context of stage II and III gastric cancer by using single and chromogenic multiplex immunohistochemistry.
    Park Y; Seo AN; Koh J; Nam SK; Kwak Y; Ahn SH; Park DJ; Kim HH; Lee HS
    Oncoimmunology; 2021; 10(1):1954761. PubMed ID: 34367732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer.
    Liu L; Lim MA; Jung SN; Oh C; Won HR; Jin YL; Piao Y; Kim HJ; Chang JW; Koo BS
    Phytomedicine; 2021 Nov; 92():153758. PubMed ID: 34592487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunophenotypic Differences in Tumor-Infiltrating Lymphocytes and Neovascularization Between Primary Cutaneous Melanoma With and Without Metastasis: An Immunohistochemical Study of 80 Cases.
    Salgüero I; Roustán G; Requena L; Suárez D; García-Fresnadillo D; Redondo JI; Nájera L
    Am J Dermatopathol; 2021 Nov; 43(11):811-818. PubMed ID: 33534211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.