These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3795275)

  • 1. Role of cellular energy state and adenosine in the regulation of coronary flow during variation in contraction frequency in an isolated perfused heart.
    Kiviluoma KT; Peuhkurinen KJ; Hassinen IE
    J Mol Cell Cardiol; 1986 Nov; 18(11):1133-42. PubMed ID: 3795275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate dependence of metabolic state and coronary flow in perfused rat heart.
    Starnes JW; Wilson DF; Erecińska M
    Am J Physiol; 1985 Oct; 249(4 Pt 2):H799-806. PubMed ID: 4051017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular source and role of adenosine in isoproterenol-induced coronary vasodilatation.
    Pekka Raatikainen MJ; Peuhkurinen KJ; Hassinen IE
    J Mol Cell Cardiol; 1991 Oct; 23(10):1137-48. PubMed ID: 1749005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytosolic adenylates and adenosine release in perfused working heart. Comparison of whole tissue with cytosolic non-aqueous fractionation analyses.
    Bünger R; Soboll S
    Eur J Biochem; 1986 Aug; 159(1):203-13. PubMed ID: 3091368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetate-induced changes in cardiac energy metabolism and hemodynamics in the rat.
    Kiviluoma KT; Karhunen M; Lapinlampi T; Peuhkurinen KJ; Hassinen IE
    Basic Res Cardiol; 1988; 83(4):431-44. PubMed ID: 3190660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial oxidative phosphorylation: tissue oxygen sensor for regulation of coronary flow.
    Nuutinen EM; Wilson DF; Erecińska M
    Adv Exp Med Biol; 1984; 169():351-7. PubMed ID: 6731096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of temperature and coronary flow on the metabolic and mechanical function of the isolated rat heart.
    Blum H; Ivanics T; Zhang D; Wroblewski K; Osbakken MD
    Cardiology; 1993; 82(4):238-48. PubMed ID: 8402750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP; Headrick JP
    Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of mitochondrial oxidative phosphorylation in regulation of coronary blood flow.
    Nuutinen EM; Nishiki K; Erecińska M; Wilson DF
    Am J Physiol; 1982 Aug; 243(2):H159-69. PubMed ID: 7114227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between the O2 supply:demand ratio, MVO2, and adenosine formation in hearts stimulated with inotropic agents.
    Headrick JP; Willis RJ
    Can J Physiol Pharmacol; 1990 Jan; 68(1):110-8. PubMed ID: 2158384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between coronary flow and high energy phosphates in the isolated perfused rat heart, with special reference to the effects of anoxia, iodoacetic acid, and 2,4-dinitrophenol.
    Shibano T; Abiko Y
    Methods Find Exp Clin Pharmacol; 1989 Sep; 11(9):567-75. PubMed ID: 2586203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of coronary perfusion during myocardial hypoxia. Comparison of metabolic and hemodynamic events with global ischemia and hypoxemia.
    Liedtke AJ
    J Thorac Cardiovasc Surg; 1976 May; 71(5):726-35. PubMed ID: 1263557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coronary autoregulation and purine release in normoxic heart at various cytoplasmic phosphorylation potentials: disparate effects of adenosine.
    Kang YH; Mallet RT; Bünger R
    Pflugers Arch; 1992 Jun; 421(2-3):188-99. PubMed ID: 1528716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of perfusate pH on coronary flow and adenosine release in isolated rabbit heart.
    Mustafa SJ; Mansour MM
    Proc Soc Exp Biol Med; 1984 May; 176(1):22-6. PubMed ID: 6709650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Oxidative energy metabolism and cardiac contractility in rat heart during graded reductions of coronary flow].
    Imamura E
    Hokkaido Igaku Zasshi; 1995 May; 70(3):429-36. PubMed ID: 7590594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of graded reductions of coronary pressure and flow on myocardial metabolism and performance: a model of "hibernating" myocardium.
    Keller AM; Cannon PJ
    J Am Coll Cardiol; 1991 Jun; 17(7):1661-70. PubMed ID: 2033199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine formation and energy metabolism: a 31P-NMR study in isolated rat heart.
    Headrick JP; Willis RJ
    Am J Physiol; 1990 Mar; 258(3 Pt 2):H617-24. PubMed ID: 2316676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine enhances cytosolic phosphorylation potential and ventricular contractility in stunned guinea pig heart: receptor-mediated and metabolic protection.
    Schulze K; Duschek C; Lasley RD; Bünger R
    J Appl Physiol (1985); 2007 Mar; 102(3):1202-13. PubMed ID: 17341737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-dependent effects of cadmium on energy metabolism and function of perfused rat heart.
    Prentice RC; Hawley PL; Glonek T; Kopp SJ
    Toxicol Appl Pharmacol; 1984 Sep; 75(2):198-210. PubMed ID: 6474458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graded global ischaemia and reperfusion of the isolated perfused rat heart: characterisation by 31P NMR spectroscopy of the extent of energy metabolism damage.
    Lavanchy N; Martin J; Rossi A
    Cardiovasc Res; 1984 Sep; 18(9):573-82. PubMed ID: 6467274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.