BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37952891)

  • 1. Dynamic lid domain of Chloroflexus aurantiacus Malonyl-CoA reductase controls the reaction.
    Kabasakal BV; Cotton CAR; Murray JW
    Biochimie; 2024 Apr; 219():12-20. PubMed ID: 37952891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement.
    Liu C; Wang Q; Xian M; Ding Y; Zhao G
    PLoS One; 2013; 8(9):e75554. PubMed ID: 24073271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of a bi-functional malonyl-CoA reductase (MCR) from the photosynthetic green non-sulfur bacterium
    Zhang X; Xin J; Wang Z; Wu W; Liu Y; Min Z; Xin Y; Liu B; He J; Zhang X; Xu X
    mBio; 2023 Aug; 14(4):e0323322. PubMed ID: 37278533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation.
    Hügler M; Menendez C; Schägger H; Fuchs G
    J Bacteriol; 2002 May; 184(9):2404-10. PubMed ID: 11948153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insight into bi-functional malonyl-CoA reductase.
    Son HF; Kim S; Seo H; Hong J; Lee D; Jin KS; Park S; Kim KJ
    Environ Microbiol; 2020 Feb; 22(2):752-765. PubMed ID: 31814251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-EM structure of bifunctional malonyl-CoA reductase from Chloroflexus aurantiacus reveals a dynamic domain movement for high enzymatic activity.
    Ahn JW; Kim S; Hong J; Kim KJ
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124676. PubMed ID: 37146856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp.
    Alber B; Olinger M; Rieder A; Kockelkorn D; Jobst B; Hügler M; Fuchs G
    J Bacteriol; 2006 Dec; 188(24):8551-9. PubMed ID: 17041055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains.
    Rathnasingh C; Raj SM; Lee Y; Catherine C; Ashok S; Park S
    J Biotechnol; 2012 Feb; 157(4):633-40. PubMed ID: 21723339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic characterization of the N-terminal domain of Malonyl-CoA reductase.
    Cavuzic MT; Waldrop GL
    Biochim Biophys Acta Proteins Proteom; 2024 Feb; 1872(2):140986. PubMed ID: 38122963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases.
    Zarzycki J; Kerfeld CA
    BMC Struct Biol; 2013 Nov; 13():28. PubMed ID: 24206647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overproduction of 3-hydroxypropionate in a super yeast chassis.
    Yu W; Cao X; Gao J; Zhou YJ
    Bioresour Technol; 2022 Oct; 361():127690. PubMed ID: 35901866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing 3-hydroxypropionic acid production in combination with sugar supply engineering by cell surface-display and metabolic engineering of Schizosaccharomyces pombe.
    Takayama S; Ozaki A; Konishi R; Otomo C; Kishida M; Hirata Y; Matsumoto T; Tanaka T; Kondo A
    Microb Cell Fact; 2018 Nov; 17(1):176. PubMed ID: 30424766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli.
    Cheng Z; Jiang J; Wu H; Li Z; Ye Q
    Bioresour Technol; 2016 Jan; 200():897-904. PubMed ID: 26606325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for a bispecific NADP+ and CoA binding site in an archaeal malonyl-coenzyme A reductase.
    Demmer U; Warkentin E; Srivastava A; Kockelkorn D; Pötter M; Marx A; Fuchs G; Ermler U
    J Biol Chem; 2013 Mar; 288(9):6363-70. PubMed ID: 23325803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of 3-hydroxypropionic acid via the malonyl-CoA pathway using recombinant fission yeast strains.
    Suyama A; Higuchi Y; Urushihara M; Maeda Y; Takegawa K
    J Biosci Bioeng; 2017 Oct; 124(4):392-399. PubMed ID: 28522285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation.
    Menendez C; Bauer Z; Huber H; Gad'on N; Stetter KO; Fuchs G
    J Bacteriol; 1999 Feb; 181(4):1088-98. PubMed ID: 9973333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of type II methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway.
    Nguyen DTN; Lee OK; Lim C; Lee J; Na JG; Lee EY
    Metab Eng; 2020 May; 59():142-150. PubMed ID: 32061966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of acetate for the production of 3-hydroxypropionic acid by metabolically-engineered Pseudomonas denitrificans.
    Zhou S; Lama S; Jiang J; Sankaranarayanan M; Park S
    Bioresour Technol; 2020 Jul; 307():123194. PubMed ID: 32234590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic degradation of malonate via malonyl-CoA by Sporomusa malonica, Klebsiella oxytoca, and Rhodobacter capsulatus.
    Dehning I; Schink B
    Antonie Van Leeuwenhoek; 1994; 66(4):343-50. PubMed ID: 7710283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malonic semialdehyde reductase, succinic semialdehyde reductase, and succinyl-coenzyme A reductase from Metallosphaera sedula: enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in Sulfolobales.
    Kockelkorn D; Fuchs G
    J Bacteriol; 2009 Oct; 191(20):6352-62. PubMed ID: 19684143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.