These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37953256)

  • 1. Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability.
    Sapozhnikov Y; Patel JS; Ytreberg FM; Miller CR
    BMC Bioinformatics; 2023 Nov; 24(1):426. PubMed ID: 37953256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate stabilities of laccase mutants predicted with a modified FoldX protocol.
    Christensen NJ; Kepp KP
    J Chem Inf Model; 2012 Nov; 52(11):3028-42. PubMed ID: 23102044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging neural networks to correct FoldX free energy estimates.
    Barnes JE; América Chi L; Marty Ytreberg F; Patel JS
    bioRxiv; 2024 Sep; ():. PubMed ID: 39386633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of disease-linked rhodopsin mutations based on structure, function, and protein stability calculations.
    Rakoczy EP; Kiel C; McKeone R; Stricher F; Serrano L
    J Mol Biol; 2011 Jan; 405(2):584-606. PubMed ID: 21094163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting changes in protein stability caused by mutation using sequence-and structure-based methods in a CAGI5 blind challenge.
    Strokach A; Corbi-Verge C; Kim PM
    Hum Mutat; 2019 Sep; 40(9):1414-1423. PubMed ID: 31243847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The FoldX web server: an online force field.
    Schymkowitz J; Borg J; Stricher F; Nys R; Rousseau F; Serrano L
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W382-8. PubMed ID: 15980494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of pathogenic missense mutations using protein stability predictors.
    Gerasimavicius L; Liu X; Marsh JA
    Sci Rep; 2020 Sep; 10(1):15387. PubMed ID: 32958805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Best templates outperform homology models in predicting the impact of mutations on protein stability.
    Pak MA; Ivankov DN
    Bioinformatics; 2022 Sep; 38(18):4312-4320. PubMed ID: 35894930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details.
    Potapov V; Cohen M; Schreiber G
    Protein Eng Des Sel; 2009 Sep; 22(9):553-60. PubMed ID: 19561092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of the 237th residue on the folding of human carbonic anhydrase II.
    Wu MJ; Jiang Y; Yan YB
    Int J Mol Sci; 2011; 12(5):2797-807. PubMed ID: 21686151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting folding free energy changes upon single point mutations.
    Zhang Z; Wang L; Gao Y; Zhang J; Zhenirovskyy M; Alexov E
    Bioinformatics; 2012 Mar; 28(5):664-71. PubMed ID: 22238268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the Effect of Amino Acid Single-Point Mutations on Protein Stability-Large-Scale Validation of MD-Based Relative Free Energy Calculations.
    Steinbrecher T; Zhu C; Wang L; Abel R; Negron C; Pearlman D; Feyfant E; Duan J; Sherman W
    J Mol Biol; 2017 Apr; 429(7):948-963. PubMed ID: 27964946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0.
    Dehouck Y; Grosfils A; Folch B; Gilis D; Bogaerts P; Rooman M
    Bioinformatics; 2009 Oct; 25(19):2537-43. PubMed ID: 19654118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation.
    Usmanova DR; Bogatyreva NS; Ariño Bernad J; Eremina AA; Gorshkova AA; Kanevskiy GM; Lonishin LR; Meister AV; Yakupova AG; Kondrashov FA; Ivankov DN
    Bioinformatics; 2018 Nov; 34(21):3653-3658. PubMed ID: 29722803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approaching protein design with multisite λ dynamics: Accurate and scalable mutational folding free energies in T4 lysozyme.
    Hayes RL; Vilseck JZ; Brooks CL
    Protein Sci; 2018 Nov; 27(11):1910-1922. PubMed ID: 30175503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and Interpretation of the Impact of Missense Variants in Cancer.
    Petrosino M; Novak L; Pasquo A; Chiaraluce R; Turina P; Capriotti E; Consalvi V
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The linear interaction energy method for the prediction of protein stability changes upon mutation.
    Wickstrom L; Gallicchio E; Levy RM
    Proteins; 2012 Jan; 80(1):111-25. PubMed ID: 22038697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large scale analysis of protein stability in OMIM disease related human protein variants.
    Martelli PL; Fariselli P; Savojardo C; Babbi G; Aggazio F; Casadio R
    BMC Genomics; 2016 Jun; 17 Suppl 2(Suppl 2):397. PubMed ID: 27356511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining structural modeling with ensemble machine learning to accurately predict protein fold stability and binding affinity effects upon mutation.
    Berliner N; Teyra J; Colak R; Garcia Lopez S; Kim PM
    PLoS One; 2014; 9(9):e107353. PubMed ID: 25243403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate Prediction of Protein Thermodynamic Stability Changes upon Residue Mutation using Free Energy Perturbation.
    Scarabelli G; Oloo EO; Maier JKX; Rodriguez-Granillo A
    J Mol Biol; 2022 Jan; 434(2):167375. PubMed ID: 34826524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.