These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 37953663)

  • 1. High-Safety Lithium-Ion Batteries with Silicon-Based Anodes Enabled by Electrolyte Design.
    Hu K; Sang X; Chen J; Liu Z; Zhang J; Hu X
    Chem Asian J; 2023 Dec; 18(24):e202300820. PubMed ID: 37953663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface Engineering to Boost Thermal Safety of Microsized Silicon Anodes in Lithium-Ion Batteries.
    Liu Q; Meng T; Yu L; Guo S; Hu Y; Liu Z; Hu X
    Small Methods; 2022 Jul; 6(7):e2200380. PubMed ID: 35652156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation.
    Lu Y; Ni Y; Chen J
    Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications.
    Feng K; Li M; Liu W; Kashkooli AG; Xiao X; Cai M; Chen Z
    Small; 2018 Feb; 14(8):. PubMed ID: 29356411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the Interfaces Between Argyrodite Solid Electrolytes and Lithium Metal Anode.
    Pang B; Gan Y; Xia Y; Huang H; He X; Zhang W
    Front Chem; 2022; 10():837978. PubMed ID: 35178377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Electrolyte Design: Broadening the Horizons of Functional Electrolytes in Lithium Batteries.
    Qin M; Zeng Z; Cheng S; Xie J
    Acc Chem Res; 2024 Apr; 57(8):1163-1173. PubMed ID: 38556989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Model Deciphering High-Voltage Electrolytes for High Energy Density, High Safety, and Fast-Charging Lithium-Ion Batteries.
    Zou Y; Cao Z; Zhang J; Wahyudi W; Wu Y; Liu G; Li Q; Cheng H; Zhang D; Park GT; Cavallo L; Anthopoulos TD; Wang L; Sun YK; Ming J
    Adv Mater; 2021 Oct; 33(43):e2102964. PubMed ID: 34510582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrolyte Engineering Toward High Performance High Nickel (Ni ≥ 80%) Lithium-Ion Batteries.
    Dong T; Zhang S; Ren Z; Huang L; Xu G; Liu T; Wang S; Cui G
    Adv Sci (Weinh); 2024 Feb; 11(7):e2305753. PubMed ID: 38044323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase.
    Xia L; Lee S; Jiang Y; Xia Y; Chen GZ; Liu Z
    ACS Omega; 2017 Dec; 2(12):8741-8750. PubMed ID: 31457404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal runaway of Lithium-ion batteries employing LiN(SO
    Hou J; Lu L; Wang L; Ohma A; Ren D; Feng X; Li Y; Li Y; Ootani I; Han X; Ren W; He X; Nitta Y; Ouyang M
    Nat Commun; 2020 Oct; 11(1):5100. PubMed ID: 33037217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-flammable Gel Polymer Electrolyte for Enhancing the Safety and High-Temperature Performance of Lithium-Ion Batteries.
    Lim DA; Seok JH; Hong D; Ahn KH; Lee CH; Kim DW
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14822-14831. PubMed ID: 38481126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering LiH Triggered Thermal Runaway Mechanism of a High-Energy LiNi
    Huang L; Xu G; Du X; Li J; Xie B; Liu H; Han P; Dong S; Cui G; Chen L
    Adv Sci (Weinh); 2021 Jul; 8(14):e2100676. PubMed ID: 34032008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries.
    Yang Y; Ren JG; Wang X; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Sep; 5(18):8689-94. PubMed ID: 23900559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemically-Matched and Nonflammable Janus Solid Electrolyte for Lithium-Metal Batteries.
    Li C; Liu G; Wang K; Dong W; Han J; Yu Y; Min Z; Yang C; Lu Z
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39271-39281. PubMed ID: 34375074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Salt Localized High-Concentration Electrolyte for Long Cycle Life Silicon-Based Lithium-Ion Batteries.
    Liu G; Xia M; Gao J; Cheng Y; Wang M; Hong W; Yang Y; Zheng J
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3586-3598. PubMed ID: 36598884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulating Anode-electrolyte Interphasial Reactions by Zwitterionic Binder Chemistry in Lithium-ion Batteries with High-nickel Layered Oxide Cathodes and Silicon-Graphite Anodes.
    Jin B; Dolocan A; Liu C; Cui Z; Manthiram A
    Angew Chem Int Ed Engl; 2024 Jul; ():e202408021. PubMed ID: 39019796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Thermal Runaway Retardant Capsules for Improved Safety and Electrochemical Performance in Lithium-Ion Batteries.
    Gao Z; Rao S; Zhang T; Gao F; Xiao Y; Shali L; Wang X; Zheng Y; Chen Y; Zong Y; Li W; Chen Y
    Adv Sci (Weinh); 2022 Feb; 9(5):e2103796. PubMed ID: 34923778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Non-Incendive High-Voltage Liquid Electrolyte Formulation for Safe Lithium-Ion Batteries.
    Kwak S; An K; Tran YHT; Song SW
    ChemSusChem; 2022 Feb; 15(4):e202102546. PubMed ID: 34939746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid.
    Yang C; Fu K; Zhang Y; Hitz E; Hu L
    Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28741318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.