These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 37954048)
1. Understanding cross-data dynamics of individual and social/environmental factors through a public health lens: explainable machine learning approaches. Jeong S; Yun SB; Park SY; Mun S Front Public Health; 2023; 11():1257861. PubMed ID: 37954048 [TBL] [Abstract][Full Text] [Related]
2. Prediction and classification of obesity risk based on a hybrid metaheuristic machine learning approach. Helforoush Z; Sayyad H Front Big Data; 2024; 7():1469981. PubMed ID: 39403430 [TBL] [Abstract][Full Text] [Related]
3. An explainable predictive model for suicide attempt risk using an ensemble learning and Shapley Additive Explanations (SHAP) approach. Nordin N; Zainol Z; Mohd Noor MH; Chan LF Asian J Psychiatr; 2023 Jan; 79():103316. PubMed ID: 36395702 [TBL] [Abstract][Full Text] [Related]
4. An interpretable machine learning model of cross-sectional U.S. county-level obesity prevalence using explainable artificial intelligence. Allen B PLoS One; 2023; 18(10):e0292341. PubMed ID: 37796874 [TBL] [Abstract][Full Text] [Related]
5. Prediction of Acute Kidney Injury after Extracorporeal Cardiac Surgery (CSA-AKI) by Machine Learning Algorithms. Tong Y; Niu X; Liu F Heart Surg Forum; 2023 Oct; 26(5):E537-E551. PubMed ID: 37920093 [TBL] [Abstract][Full Text] [Related]
6. Application of SHAP for Explainable Machine Learning on Age-Based Subgrouping Mammography Questionnaire Data for Positive Mammography Prediction and Risk Factor Identification. Sun J; Sun CK; Tang YX; Liu TC; Lu CJ Healthcare (Basel); 2023 Jul; 11(14):. PubMed ID: 37510441 [TBL] [Abstract][Full Text] [Related]
7. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study. Yang X; Qiu H; Wang L; Wang X J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174 [TBL] [Abstract][Full Text] [Related]
8. What dictates income in New York City? SHAP analysis of income estimation based on Socio-economic and Spatial Information Gaussian Processes (SSIG). Bai R; Lam JCK; Li VOK Humanit Soc Sci Commun; 2023; 10(1):60. PubMed ID: 36818038 [TBL] [Abstract][Full Text] [Related]
9. Explainable machine learning for chronic lymphocytic leukemia treatment prediction using only inexpensive tests. Meiseles A; Paley D; Ziv M; Hadid Y; Rokach L; Tadmor T Comput Biol Med; 2022 Jun; 145():105490. PubMed ID: 35405402 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of explainable machine learning prediction models for hospital mortality. Stenwig E; Salvi G; Rossi PS; Skjærvold NK BMC Med Res Methodol; 2022 Feb; 22(1):53. PubMed ID: 35220950 [TBL] [Abstract][Full Text] [Related]
11. An interpretable machine learning method for supporting ecosystem management: Application to species distribution models of freshwater macroinvertebrates. Cha Y; Shin J; Go B; Lee DS; Kim Y; Kim T; Park YS J Environ Manage; 2021 Aug; 291():112719. PubMed ID: 33946026 [TBL] [Abstract][Full Text] [Related]
12. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291 [TBL] [Abstract][Full Text] [Related]
13. Explainable artificial intelligence model for identifying COVID-19 gene biomarkers. Yagin FH; Cicek İB; Alkhateeb A; Yagin B; Colak C; Azzeh M; Akbulut S Comput Biol Med; 2023 Mar; 154():106619. PubMed ID: 36738712 [TBL] [Abstract][Full Text] [Related]
14. Understanding risk factors for postoperative mortality in neonates based on explainable machine learning technology. Hu Y; Gong X; Shu L; Zeng X; Duan H; Luo Q; Zhang B; Ji Y; Wang X; Shu Q; Li H J Pediatr Surg; 2021 Dec; 56(12):2165-2171. PubMed ID: 33863558 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning Models for Predicting Influential Factors of Early Outcomes in Acute Ischemic Stroke: Registry-Based Study. Su PY; Wei YC; Luo H; Liu CH; Huang WY; Chen KF; Lin CP; Wei HY; Lee TH JMIR Med Inform; 2022 Mar; 10(3):e32508. PubMed ID: 35072631 [TBL] [Abstract][Full Text] [Related]
16. Explainable machine learning model for predicting the occurrence of postoperative malnutrition in children with congenital heart disease. Shi H; Yang D; Tang K; Hu C; Li L; Zhang L; Gong T; Cui Y Clin Nutr; 2022 Jan; 41(1):202-210. PubMed ID: 34906845 [TBL] [Abstract][Full Text] [Related]
17. Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan. Pai KC; Su SA; Chan MC; Wu CL; Chao WC BMC Anesthesiol; 2022 Nov; 22(1):351. PubMed ID: 36376785 [TBL] [Abstract][Full Text] [Related]
18. Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Tseng PY; Chen YT; Wang CH; Chiu KM; Peng YS; Hsu SP; Chen KL; Yang CY; Lee OK Crit Care; 2020 Jul; 24(1):478. PubMed ID: 32736589 [TBL] [Abstract][Full Text] [Related]
19. Integrative gene expression analysis for the diagnosis of Parkinson's disease using machine learning and explainable AI. Bhandari N; Walambe R; Kotecha K; Kaliya M Comput Biol Med; 2023 Sep; 163():107140. PubMed ID: 37315380 [TBL] [Abstract][Full Text] [Related]
20. An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation. Zhang Y; Yang D; Liu Z; Chen C; Ge M; Li X; Luo T; Wu Z; Shi C; Wang B; Huang X; Zhang X; Zhou S; Hei Z J Transl Med; 2021 Jul; 19(1):321. PubMed ID: 34321016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]