These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37954369)
21. Estimation of forest carbon stocks in temperate and subtropical mountain systems of Pakistan: implications for REDD+ and climate change mitigation. Ali A; Ashraf MI; Gulzar S; Akmal M Environ Monit Assess; 2020 Feb; 192(3):198. PubMed ID: 32107638 [TBL] [Abstract][Full Text] [Related]
22. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications. Doetterl S; Kearsley E; Bauters M; Hufkens K; Lisingo J; Baert G; Verbeeck H; Boeckx P PLoS One; 2015; 10(11):e0143209. PubMed ID: 26599231 [TBL] [Abstract][Full Text] [Related]
23. From berries to blocks: carbon stock quantification of a California vineyard. Morandé JA; Stockert CM; Liles GC; Williams JN; Smart DR; Viers JH Carbon Balance Manag; 2017 Dec; 12(1):5. PubMed ID: 28413849 [TBL] [Abstract][Full Text] [Related]
24. Assessment of forest carbon stocks for REDD+ implementation in the muyong forest system of Ifugao, Philippines. Avtar R; Tsusaka K; Herath S Environ Monit Assess; 2020 Aug; 192(9):571. PubMed ID: 32772191 [TBL] [Abstract][Full Text] [Related]
25. A novel approach for estimation of aboveground biomass of a carbon-rich mangrove site in India. Ghosh SM; Behera MD; Jagadish B; Das AK; Mishra DR J Environ Manage; 2021 Aug; 292():112816. PubMed ID: 34030019 [TBL] [Abstract][Full Text] [Related]
26. The role of composition, invasives, and maintenance emissions on urban forest carbon stocks. Horn J; Escobedo FJ; Hinkle R; Hostetler M; Timilsina N Environ Manage; 2015 Feb; 55(2):431-42. PubMed ID: 25392018 [TBL] [Abstract][Full Text] [Related]
27. How biotic, abiotic, and functional variables drive belowground soil carbon stocks along stress gradient in the Sundarbans Mangrove Forest? Ahmed S; Sarker SK; Kamruzzaman M; Ema JA; Saagulo Naabeh CS; Cudjoe E; Chowdhury FI; Pretzsch H J Environ Manage; 2023 Jul; 337():117772. PubMed ID: 36958279 [TBL] [Abstract][Full Text] [Related]
28. An assessment of oil palm plantation aboveground biomass stocks on tropical peat using destructive and non-destructive methods. Lewis K; Rumpang E; Kho LK; McCalmont J; Teh YA; Gallego-Sala A; Hill TC Sci Rep; 2020 Feb; 10(1):2230. PubMed ID: 32041975 [TBL] [Abstract][Full Text] [Related]
29. A 3D approach to model the taper of irregular tree stems: making plots biomass estimates comparable in tropical forests. Bauwens S; Ploton P; Fayolle A; Ligot G; Loumeto JJ; Lejeune P; Gourlet-Fleury S Ecol Appl; 2021 Dec; 31(8):e02451. PubMed ID: 34519125 [TBL] [Abstract][Full Text] [Related]
30. Forest biomass variation in Southernmost Brazil: the impact of Araucaria trees. Rosenfield MF; Souza AF Rev Biol Trop; 2014 Mar; 62(1):359-72. PubMed ID: 24912365 [TBL] [Abstract][Full Text] [Related]
31. Bars to jars: bamboo value chains in Cameroon. Ingram V; Tieguhong JC Ambio; 2013 Apr; 42(3):320-33. PubMed ID: 23015325 [TBL] [Abstract][Full Text] [Related]
32. Comparisons of allometric and climate-derived estimates of tree coarse root carbon stocks in forests of the United States. Russell MB; Domke GM; Woodall CW; D'Amato AW Carbon Balance Manag; 2015 Dec; 10():20. PubMed ID: 26366191 [TBL] [Abstract][Full Text] [Related]
33. Optimizing selective cutting strategies for maximum carbon stocks and yield of Moso bamboo forest using BIOME-BGC model. Mao F; Zhou G; Li P; Du H; Xu X; Shi Y; Mo L; Zhou Y; Tu G J Environ Manage; 2017 Apr; 191():126-135. PubMed ID: 28092748 [TBL] [Abstract][Full Text] [Related]
34. Re-evaluation of individual diameter : height allometric models to improve biomass estimation of tropical trees. Ledo A; Cornulier T; Illian JB; Iida Y; Kassim AR; Burslem DF Ecol Appl; 2016 Dec; 26(8):2374-2380. PubMed ID: 27907254 [TBL] [Abstract][Full Text] [Related]
35. An allometric model-based approach for estimating biomass in seven Indian bamboo species in western Himalayan foothills, India. Kaushal R; Islam S; Tewari S; Tomar JMS; Thapliyal S; Madhu M; Trinh TL; Singh T; Singh A; Durai J Sci Rep; 2022 May; 12(1):7527. PubMed ID: 35534634 [TBL] [Abstract][Full Text] [Related]
36. Prediction of aboveground biomass and carbon stock of Ouédraogo S; Ouédraogo O; Dimobe K; Thiombiano A; Boussim JI Heliyon; 2020 Aug; 6(8):e04581. PubMed ID: 32793827 [No Abstract] [Full Text] [Related]
37. Forest biomass estimation using remote sensing and field inventory: a case study of Tripura, India. Pandey PC; Srivastava PK; Chetri T; Choudhary BK; Kumar P Environ Monit Assess; 2019 Aug; 191(9):593. PubMed ID: 31456055 [TBL] [Abstract][Full Text] [Related]
38. Stocks of carbon and nitrogen and partitioning between above- and belowground pools in the Brazilian coastal Atlantic Forest elevation range. Vieira SA; Alves LF; Duarte-Neto PJ; Martins SC; Veiga LG; Scaranello MA; Picollo MC; Camargo PB; do Carmo JB; Neto ES; Santos FA; Joly CA; Martinelli LA Ecol Evol; 2011 Nov; 1(3):421-34. PubMed ID: 22393511 [TBL] [Abstract][Full Text] [Related]
39. Biomass and carbon estimation for scrub mangrove forests and examination of their allometric associated uncertainties. Virgulino-Júnior PCC; Carneiro DN; Nascimento WR; Cougo MF; Fernandes MEB PLoS One; 2020; 15(3):e0230008. PubMed ID: 32155195 [TBL] [Abstract][Full Text] [Related]
40. Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests. Ishihara MI; Utsugi H; Tanouchi H; Aiba M; Kurokawa H; Onoda Y; Nagano M; Umehara T; Ando M; Miyata R; Hiura T Ecol Appl; 2015 Jul; 25(5):1433-46. PubMed ID: 26485966 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]