BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37954374)

  • 1. Prediction of the interaction between
    Kusuma WA; Fadli A; Fatriani R; Sofyantoro F; Yudha DS; Lischer K; Nuringtyas TR; Putri WA; Purwestri YA; Swasono RT
    Heliyon; 2023 Nov; 9(11):e21149. PubMed ID: 37954374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic Characterization of Two Medically Important Malaysian Snake Venoms,
    Kunalan S; Othman I; Syed Hassan S; Hodgson WC
    Toxins (Basel); 2018 Oct; 10(11):. PubMed ID: 30373186
    [No Abstract]   [Full Text] [Related]  

  • 3. Venomics of Calloselasma rhodostoma, the Malayan pit viper: A complex toxin arsenal unraveled.
    Tang EL; Tan CH; Fung SY; Tan NH
    J Proteomics; 2016 Oct; 148():44-56. PubMed ID: 27418434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of enzyme-linked immunosorbent assay for the quantitation of Calloselasma rhodostoma (Malayan pit viper) venom and venom antibodies.
    Tan NH; Yeo KH; Jaafar MI
    Toxicon; 1992 Dec; 30(12):1609-20. PubMed ID: 1488770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative proteomes, immunoreactivities and neutralization of procoagulant activities of Calloselasma rhodostoma (Malayan pit viper) venoms from four regions in Southeast Asia.
    Tang ELH; Tan NH; Fung SY; Tan CH
    Toxicon; 2019 Nov; 169():91-102. PubMed ID: 31445943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Venom-gland transcriptomics of the Malayan pit viper (
    Adisakwattana P; Chanhome L; Chaiyabutr N; Phuphisut O; Onrapak R; Thawornkuno C
    Heliyon; 2023 May; 9(5):e15476. PubMed ID: 37153433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histopathological Changes in the Liver, Heart and Kidneys Following Malayan Pit Viper (
    Khimmaktong W; Nuanyaem N; Lorthong N; Hodgson WC; Chaisakul J
    Toxins (Basel); 2022 Aug; 14(9):. PubMed ID: 36136539
    [No Abstract]   [Full Text] [Related]  

  • 8. l-Amino acid oxidase isolated from Calloselasma rhodostoma snake venom induces cytotoxicity and apoptosis in JAK2V617F-positive cell lines.
    Tavares C; Maciel T; Burin S; Ambrósio L; Ghisla S; Sampaio S; Castro F
    Rev Bras Hematol Hemoter; 2016; 38(2):128-34. PubMed ID: 27208571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A common precursor for a putative hemorrhagic protein and rhodostomin, a platelet aggregation inhibitor of the venom of Calloselasma rhodostoma: molecular cloning and sequence analysis.
    Au LC; Huang YB; Huang TF; Teh GW; Lin HH; Choo KB
    Biochem Biophys Res Commun; 1991 Dec; 181(2):585-93. PubMed ID: 1755841
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Tan CH; Tan KY; Ng TS; Tan NH; Chong HP
    Toxins (Basel); 2023 Apr; 15(5):. PubMed ID: 37235350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression and geographic variation of the venom phospholipases A2 of Calloselasma rhodostoma and Trimeresurus mucrosquamatus.
    Tsai IH; Chen YH; Wang YM; Liau MY; Lu PJ
    Arch Biochem Biophys; 2001 Mar; 387(2):257-64. PubMed ID: 11370849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational tools for exploring peptide-membrane interactions in gram-positive bacteria.
    Kumar S; Balaya RDA; Kanekar S; Raju R; Prasad TSK; Kandasamy RK
    Comput Struct Biotechnol J; 2023; 21():1995-2008. PubMed ID: 36950221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The snake venom rhodocytin from Calloselasma rhodostoma- a clinically important toxin and a useful experimental tool for studies of C-type lectin-like receptor 2 (CLEC-2).
    Bruserud Ø
    Toxins (Basel); 2013 Apr; 5(4):665-74. PubMed ID: 23594438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic comparison of Hypnale hypnale (hump-nosed pit-viper) and Calloselasma rhodostoma (Malayan pit-viper) venoms.
    Ali SA; Baumann K; Jackson TN; Wood K; Mason S; Undheim EA; Nouwens A; Koludarov I; Hendrikx I; Jones A; Fry BG
    J Proteomics; 2013 Oct; 91():338-43. PubMed ID: 23911961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic profiles and biological activities: intraspecific variation in the venom of the Malayan pit viper (Calloselasma rhodostoma).
    Daltry JC; Ponnudurai G; Shin CK; Tan NH; Thorpe RS; Wüster W
    Toxicon; 1996 Jan; 34(1):67-79. PubMed ID: 8835335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide sequence of a full-length cDNA encoding a common precursor of platelet aggregation inhibitor and hemorrhagic protein from Calloselasma rhodostoma venom.
    Au LC; Chou JS; Chang KJ; Teh GW; Lin SB
    Biochim Biophys Acta; 1993 May; 1173(2):243-5. PubMed ID: 7916635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodocetin, a novel platelet aggregation inhibitor from the venom of Calloselasma rhodostoma (Malayan pit viper): synergistic and noncovalent interaction between its subunits.
    Wang R; Kini RM; Chung MC
    Biochemistry; 1999 Jun; 38(23):7584-93. PubMed ID: 10360956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and properties of the L-amino acid oxidase from Malayan pit viper (Calloselasma rhodostoma) venom.
    Ponnudurai G; Chung MC; Tan NH
    Arch Biochem Biophys; 1994 Sep; 313(2):373-8. PubMed ID: 8080286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospray mass spectrometry of Malayan pit viper (Calloselasma rhodostoma) venom.
    Sweetman GM; Garner GV; Gordon DB; Tetler L; Theakston RD
    Rapid Commun Mass Spectrom; 1992 Dec; 6(12):724-6. PubMed ID: 1286207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The L-amino acid oxidase from Calloselasma rhodostoma snake venom modulates apoptomiRs expression in Bcr-Abl-positive cell lines.
    Burin SM; Berzoti-Coelho MG; Cominal JG; Ambrosio L; Torqueti MR; Sampaio SV; de Castro FA
    Toxicon; 2016 Sep; 120():9-14. PubMed ID: 27421670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.