These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 37954459)

  • 41. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics.
    Bruch R; Baaske J; Chatelle C; Meirich M; Madlener S; Weber W; Dincer C; Urban GA
    Adv Mater; 2019 Dec; 31(51):e1905311. PubMed ID: 31663165
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR-Cas12a combined with reverse transcription recombinase polymerase amplification for sensitive and specific detection of human norovirus genotype GII.4.
    Qian W; Huang J; Wang X; Wang T; Li Y
    Virology; 2021 Dec; 564():26-32. PubMed ID: 34601182
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recombinant polymerase amplification combined with lateral flow strips for the detection of deep-seated
    Zhao M; Wang X; Wang K; Li Y; Wang Y; Zhou P; Wang L; Zhu W
    Front Cell Infect Microbiol; 2022; 12():958858. PubMed ID: 36004333
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Specific Detection of Influenza A and B Viruses by CRISPR-Cas12a-Based Assay.
    Park BJ; Park MS; Lee JM; Song YJ
    Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33808752
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPR gel: A one-pot biosensing platform for rapid and sensitive detection of HIV viral RNA.
    Uno N; Li Z; Avery L; Sfeir MM; Liu C
    Anal Chim Acta; 2023 Jun; 1262():341258. PubMed ID: 37179057
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Establishment and Application of CRISPR-Cas12a-Based Recombinase Polymerase Amplification and a Lateral Flow Dipstick and Fluorescence for the Detection and Distinction of Deformed Wing Virus Types A and B.
    Xiao Y; Fei D; Li M; Ma Y; Ma M
    Viruses; 2023 Oct; 15(10):. PubMed ID: 37896818
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A recombinase polymerase amplification (RPA) combined with strip visualization method for RNA-based presumptive tests of saliva and vaginal secretion.
    Liu J; Zhang X; Liu Y; Fan J; Zhang M; Yu H; Li W; Li J; Li Z; Yan J; Zhang G
    Forensic Sci Int Genet; 2023 Jan; 62():102788. PubMed ID: 36265335
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid and visual detection of Staphylococcus aureus in milk using a recombinase polymerase amplification-lateral flow assay combined with immunomagnetic separation.
    Wang YL; Zhang X; Wang Q; Liu PX; Tang W; Guo R; Zhang HY; Chen ZG; Han XG; Jiang W
    J Appl Microbiol; 2022 Dec; 133(6):3741-3754. PubMed ID: 36073301
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advancements in CRISPR-Based Biosensing for Next-Gen Point of Care Diagnostic Application.
    Kumaran A; Jude Serpes N; Gupta T; James A; Sharma A; Kumar D; Nagraik R; Kumar V; Pandey S
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831968
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of a recombinase polymerase amplification (RPA) assay and pilot field testing for Giardia duodenalis at Lake Albert, Uganda.
    Molina-Gonzalez SJ; Bhattacharyya T; AlShehri HR; Poulton K; Allen S; Miles MA; Arianitwe M; Tukahebwa EM; Webster B; Russell Stothard J; Bustinduy AL
    Parasit Vectors; 2020 Jun; 13(1):289. PubMed ID: 32505215
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recombinase polymerase amplification assay for rapid detection of Monkeypox virus.
    Davi SD; Kissenkötter J; Faye M; Böhlken-Fascher S; Stahl-Hennig C; Faye O; Faye O; Sall AA; Weidmann M; Ademowo OG; Hufert FT; Czerny CP; Abd El Wahed A
    Diagn Microbiol Infect Dis; 2019 Sep; 95(1):41-45. PubMed ID: 31126795
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recombinase polymerase amplification in minimally buffered conditions.
    Tomar S; Lavickova B; Guiducci C
    Biosens Bioelectron; 2022 Feb; 198():113802. PubMed ID: 34847361
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preliminary investigation of hepatitis E virus detection by a recombinase polymerase amplification assay combined with a lateral flow strip.
    Li M; Li T; Hao X; Liu Y; Lan H; Zhou C
    J Vet Diagn Invest; 2023 Jul; 35(4):395-398. PubMed ID: 37029661
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid Detection of
    Li N; Wang L; Wang F; Chen H; Tao S; Zhu Q; Liu L; Liang W; Ma F
    Front Cell Infect Microbiol; 2022; 12():877649. PubMed ID: 35663473
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of Schistosoma japonicum.
    Sun K; Xing W; Yu X; Fu W; Wang Y; Zou M; Luo Z; Xu D
    Parasit Vectors; 2016 Aug; 9(1):476. PubMed ID: 27577576
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Digital Recombinase Polymerase Amplification, Digital Loop-Mediated Isothermal Amplification, and Digital CRISPR-Cas Assisted Assay: Current Status, Challenges, and Perspectives.
    Yin W; Zhuang J; Li J; Xia L; Hu K; Yin J; Mu Y
    Small; 2023 Dec; 19(49):e2303398. PubMed ID: 37612816
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Isothermal Method for Sensitive Detection of Mycobacterium tuberculosis Complex Using Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a Cis and Trans Cleavage.
    Xu H; Zhang X; Cai Z; Dong X; Chen G; Li Z; Qiu L; He L; Liang B; Liu X; Liu J
    J Mol Diagn; 2020 Aug; 22(8):1020-1029. PubMed ID: 32470556
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid Detection of Strawberry Mild Yellow Edge Virus with a Lateral Flow Strip Reverse Transcription Recombinase Polymerase Amplification Assay.
    Zou X; Dong C; Ni Y; Gao Q
    Curr Microbiol; 2022 Oct; 79(12):365. PubMed ID: 36253613
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RPA-Cas12a-FS: A frontline nucleic acid rapid detection system for food safety based on CRISPR-Cas12a combined with recombinase polymerase amplification.
    Liu H; Wang J; Zeng H; Liu X; Jiang W; Wang Y; Ouyang W; Tang X
    Food Chem; 2021 Jan; 334():127608. PubMed ID: 32711280
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of A Super-Sensitive Diagnostic Method for African Swine Fever Using CRISPR Techniques.
    Ren M; Mei H; Zhou M; Fu ZF; Han H; Bi D; Peng F; Zhao L
    Virol Sin; 2021 Apr; 36(2):220-230. PubMed ID: 33411169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.