BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 37954849)

  • 1. The mechanisms of action of mitochondrial targeting agents in cancer: inhibiting oxidative phosphorylation and inducing apoptosis.
    Yang Y; An Y; Ren M; Wang H; Bai J; Du W; Kong D
    Front Pharmacol; 2023; 14():1243613. PubMed ID: 37954849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OXPHOS-targeting drugs in oncology: new perspectives.
    Kalyanaraman B; Cheng G; Hardy M; You M
    Expert Opin Ther Targets; 2023; 27(10):939-952. PubMed ID: 37736880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents.
    Ralph SJ; Low P; Dong L; Lawen A; Neuzil J
    Recent Pat Anticancer Drug Discov; 2006 Nov; 1(3):327-46. PubMed ID: 18221044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting Mitochondrial Vulnerabilities to Trigger Apoptosis Selectively in Cancer Cells.
    Nguyen C; Pandey S
    Cancers (Basel); 2019 Jun; 11(7):. PubMed ID: 31261935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor cell death induced by the inhibition of mitochondrial electron transport: the effect of 3-hydroxybakuchiol.
    Jaña F; Faini F; Lapier M; Pavani M; Kemmerling U; Morello A; Maya JD; Jara J; Parra E; Ferreira J
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):356-64. PubMed ID: 23777606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative modulation of mitochondrial oxidative phosphorylation by epigallocatechin-3 gallate leads to growth arrest and apoptosis in human malignant pleural mesothelioma cells.
    Valenti D; de Bari L; Manente GA; Rossi L; Mutti L; Moro L; Vacca RA
    Biochim Biophys Acta; 2013 Dec; 1832(12):2085-96. PubMed ID: 23911347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting mitochondrial metabolism for metastatic cancer therapy.
    Passaniti A; Kim MS; Polster BM; Shapiro P
    Mol Carcinog; 2022 Sep; 61(9):827-838. PubMed ID: 35723497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of reactive oxygen species: an emerging approach for cancer therapy.
    Zou Z; Chang H; Li H; Wang S
    Apoptosis; 2017 Nov; 22(11):1321-1335. PubMed ID: 28936716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial respiration supports autophagy to provide stress resistance during quiescence.
    Magalhaes-Novais S; Blecha J; Naraine R; Mikesova J; Abaffy P; Pecinova A; Milosevic M; Bohuslavova R; Prochazka J; Khan S; Novotna E; Sindelka R; Machan R; Dewerchin M; Vlcak E; Kalucka J; Stemberkova Hubackova S; Benda A; Goveia J; Mracek T; Barinka C; Carmeliet P; Neuzil J; Rohlenova K; Rohlena J
    Autophagy; 2022 Oct; 18(10):2409-2426. PubMed ID: 35258392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.
    Yang Y; Karakhanova S; Hartwig W; D'Haese JG; Philippov PP; Werner J; Bazhin AV
    J Cell Physiol; 2016 Dec; 231(12):2570-81. PubMed ID: 26895995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic Targeting of Tumor Cells and Tumor Immune Microenvironment Vulnerabilities.
    Kalyanaraman B; Cheng G; Hardy M
    Front Oncol; 2022; 12():816504. PubMed ID: 35756631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting mitochondria.
    Hoye AT; Davoren JE; Wipf P; Fink MP; Kagan VE
    Acc Chem Res; 2008 Jan; 41(1):87-97. PubMed ID: 18193822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition.
    Trotta AP; Gelles JD; Serasinghe MN; Loi P; Arbiser JL; Chipuk JE
    J Biol Chem; 2017 Jul; 292(28):11727-11739. PubMed ID: 28546431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological evaluation of mitochondria targeting small molecules as potent anticancer drugs.
    Luo S; Dang X; Wang J; Yuan C; Hu Y; Lei S; Zhang Y; Lu D; Jiang F; Fu L
    Bioorg Chem; 2021 Sep; 114():105055. PubMed ID: 34144278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hitting the Bull's-Eye in Metastatic Cancers-NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death.
    Ralph SJ; Pritchard R; Rodríguez-Enríquez S; Moreno-Sánchez R; Ralph RK
    Pharmaceuticals (Basel); 2015 Feb; 8(1):62-106. PubMed ID: 25688484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor necrosis factor-alpha and apoptosis signal-regulating kinase 1 control reactive oxygen species release, mitochondrial autophagy, and c-Jun N-terminal kinase/p38 phosphorylation during necrotizing enterocolitis.
    Baregamian N; Song J; Bailey CE; Papaconstantinou J; Evers BM; Chung DH
    Oxid Med Cell Longev; 2009; 2(5):297-306. PubMed ID: 20716917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathophysiological implications of mitochondrial oxidative stress mediated by mitochondriotropic agents and polyamines: the role of tyrosine phosphorylation.
    Grancara S; Zonta F; Ohkubo S; Brunati AM; Agostinelli E; Toninello A
    Amino Acids; 2015 May; 47(5):869-83. PubMed ID: 25792113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria.
    Caro P; Gomez J; Sanchez I; Naudi A; Ayala V; López-Torres M; Pamplona R; Barja G
    Rejuvenation Res; 2009 Dec; 12(6):421-34. PubMed ID: 20041736
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.