These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 37954896)
1. Development of photoreactive demineralized bone matrix 3D printing colloidal inks for bone tissue engineering. Hogan KJ; Öztatlı H; Perez MR; Si S; Umurhan R; Jui E; Wang Z; Jiang EY; Han SR; Diba M; Jane Grande-Allen K; Garipcan B; Mikos AG Regen Biomater; 2023; 10():rbad090. PubMed ID: 37954896 [TBL] [Abstract][Full Text] [Related]
2. Swelling Behaviors of 3D Printed Hydrogel and Hydrogel-Microcarrier Composite Scaffolds. Bittner SM; Pearce HA; Hogan KJ; Smoak MM; Guo JL; Melchiorri AJ; Scott DW; Mikos AG Tissue Eng Part A; 2021 Jun; 27(11-12):665-678. PubMed ID: 33470161 [TBL] [Abstract][Full Text] [Related]
3. Extrusion 3D (Bio)Printing of Alginate-Gelatin-Based Composite Scaffolds for Skeletal Muscle Tissue Engineering. Sonaye SY; Ertugral EG; Kothapalli CR; Sikder P Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431432 [TBL] [Abstract][Full Text] [Related]
4. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow. Hou T; Li Z; Luo F; Xie Z; Wu X; Xing J; Dong S; Xu J Biomaterials; 2014 Jul; 35(22):5689-99. PubMed ID: 24755526 [TBL] [Abstract][Full Text] [Related]
5. Bone ingrowth induced by gelatin/chitosan internal matrix of 3DP Ti6Al4V scaffold. Wang K; Zhou H; Wang H; Li B; Liang C Biomater Adv; 2024 Nov; 164():213993. PubMed ID: 39151271 [TBL] [Abstract][Full Text] [Related]
6. 3D-Printed Ceramic-Demineralized Bone Matrix Hyperelastic Bone Composite Scaffolds for Spinal Fusion. Driscoll JA; Lubbe R; Jakus AE; Chang K; Haleem M; Yun C; Singh G; Schneider AD; Katchko KM; Soriano C; Newton M; Maerz T; Li X; Baker K; Hsu WK; Shah RN; Stock SR; Hsu EL Tissue Eng Part A; 2020 Feb; 26(3-4):157-166. PubMed ID: 31469055 [TBL] [Abstract][Full Text] [Related]
7. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization. Tran HN; Kim IG; Kim JH; Chung EJ; Noh I Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708 [TBL] [Abstract][Full Text] [Related]
8. Bioartificial injectable cartilage implants from demineralized bone matrix/PVA and related studies in rabbit animal model. Dadgar N; Ghiaseddin A; Irani S; Tafti SHA; Soufi-Zomorrod M; Soleimani M J Biomater Appl; 2021 May; 35(10):1315-1326. PubMed ID: 33307942 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of Antibacterial, Osteo-Inductor 3D Printed Aerogel-Based Scaffolds by Incorporation of Drug Laden Hollow Mesoporous Silica Microparticles into the Self-Assembled Silk Fibroin Biopolymer. Ng P; Pinho AR; Gomes MC; Demidov Y; Krakor E; Grume D; Herb M; Lê K; Mano J; Mathur S; Maleki H Macromol Biosci; 2022 Apr; 22(4):e2100442. PubMed ID: 35029037 [TBL] [Abstract][Full Text] [Related]
10. Development and optimisation of hydroxyapatite-polyethylene glycol diacrylate hydrogel inks for 3D printing of bone tissue engineered scaffolds. Rajabi M; Cabral JD; Saunderson S; Gould M; Ali MA Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37699400 [TBL] [Abstract][Full Text] [Related]
11. Influence of Geometry and Architecture on the Hallman M; Driscoll JA; Lubbe R; Jeong S; Chang K; Haleem M; Jakus A; Pahapill R; Yun C; Shah R; Hsu WK; Stock SR; Hsu EL Tissue Eng Part A; 2021 Jan; 27(1-2):26-36. PubMed ID: 32098585 [TBL] [Abstract][Full Text] [Related]
12. Osteogenic protein-1 for long bone nonunion: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2005; 5(6):1-57. PubMed ID: 23074475 [TBL] [Abstract][Full Text] [Related]
13. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity. Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841 [TBL] [Abstract][Full Text] [Related]
14. 3D printed colloidal biomaterials based on photo-reactive gelatin nanoparticles. Diba M; Koons GL; Bedell ML; Mikos AG Biomaterials; 2021 Jul; 274():120871. PubMed ID: 34029914 [TBL] [Abstract][Full Text] [Related]
15. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration. Rodriguez RU; Kemper N; Breathwaite E; Dutta SM; Hsu EL; Hsu WK; Francis MP Biofabrication; 2016 Jul; 8(3):035007. PubMed ID: 27458901 [TBL] [Abstract][Full Text] [Related]
17. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034 [TBL] [Abstract][Full Text] [Related]
18. Osteoinductivity and biomechanical assessment of a 3D printed demineralized bone matrix-ceramic composite in a rat spine fusion model. Plantz MA; Minardi S; Lyons JG; Greene AC; Ellenbogen DJ; Hallman M; Yamaguchi JT; Jeong S; Yun C; Jakus AE; Blank KR; Havey RM; Muriuki M; Patwardhan AG; Shah RN; Hsu WK; Stock SR; Hsu EL Acta Biomater; 2021 Jun; 127():146-158. PubMed ID: 33831576 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study. Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250 [TBL] [Abstract][Full Text] [Related]
20. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration. El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]