BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37954967)

  • 21. Phase-field modelling of a miscible system in spinning droplet tensiometer.
    Vorobev A; Boghi A
    J Colloid Interface Sci; 2016 Nov; 482():193-204. PubMed ID: 27501043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inkjet printing on hydrophobic surfaces: Controlled pattern formation using sequential drying.
    Naderi P; Sheuten BR; Amirfazli A; Grau G
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37449579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical Simulation of Sessile Droplet Spreading and Penetration on Porous Substrates.
    Fu F; Li P; Wang K; Wu R
    Langmuir; 2019 Feb; 35(8):2917-2924. PubMed ID: 30715890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diffuse-interface approach to rotating Hele-Shaw flows.
    Chen CY; Huang YS; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046302. PubMed ID: 22181256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pore scale investigation on scaling-up micro-macro capillary number and wettability on trapping and mobilization of residual fluid.
    Wang Y; Song R; Liu JJ; Cui MM; Ranjith PG
    J Contam Hydrol; 2019 Aug; 225():103499. PubMed ID: 31103927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic Wettability on the Lubricant-Impregnated Surface: From Nucleation to Growth and Coalescence.
    Guo L; Tang GH; Kumar S
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26555-26565. PubMed ID: 32419445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A numerical investigation of the effect of surface wettability on the boiling curve.
    Hsu HY; Lin MC; Popovic B; Lin CR; Patankar NA
    PLoS One; 2017; 12(11):e0187175. PubMed ID: 29125847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A dual resolution phase-field solver for wetting of viscoelastic droplets.
    Bazesefidpar K; Brandt L; Tammisola O
    Int J Numer Methods Fluids; 2022 Sep; 94(9):1517-1541. PubMed ID: 36247354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phase-field-based lattice Boltzmann model for immiscible incompressible N-phase flows.
    Yuan X; Liang H; Chai Z; Shi B
    Phys Rev E; 2020 Jun; 101(6-1):063310. PubMed ID: 32688516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Confinement Dynamics of Nanodroplets between Two Surfaces: Effects of Wettability and Electric Field.
    Liu D; Cao Q; Piao Z; Li L
    Chemphyschem; 2022 Dec; 23(24):e202200184. PubMed ID: 35986551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical Study of Droplet Dynamics on a Solid Surface with Insoluble Surfactants.
    Zhang J; Liu H; Ba Y
    Langmuir; 2019 Jun; 35(24):7858-7870. PubMed ID: 31120757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoparticle-induced morphology and hydrophilicity of structured surfaces.
    Gao N; Yan Y; Chen X; Mee DJ
    Langmuir; 2012 Aug; 28(33):12256-65. PubMed ID: 22839729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation of droplet formation and coalescence using lattice Boltzmann-based single-phase model.
    Xing XQ; Butler DL; Ng SH; Wang Z; Danyluk S; Yang C
    J Colloid Interface Sci; 2007 Jul; 311(2):609-18. PubMed ID: 17434175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of freezing of a sessile water droplet on surfaces over a range of wettability.
    Fuller A; Kant K; Pitchumani R
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):960-970. PubMed ID: 37776723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical Modelling of Mixing in a Microfluidic Droplet Using a Two-Phase Moving Frame of Reference Approach.
    Mbanjwa MB; Harding K; Gledhill IMA
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative phase-field modeling for wetting phenomena.
    Badillo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033005. PubMed ID: 25871200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects.
    Rupp F; Gittens RA; Scheideler L; Marmur A; Boyan BD; Schwartz Z; Geis-Gerstorfer J
    Acta Biomater; 2014 Jul; 10(7):2894-906. PubMed ID: 24590162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dropwise Evaporative Cooling of Heated Surfaces with Various Wettability Characteristics Obtained by Nanostructure Modifications.
    Chen JN; Zhang Z; Ouyang XL; Jiang PX
    Nanoscale Res Lett; 2016 Dec; 11(1):158. PubMed ID: 27003427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full-scaled simulation study considering surface-coupled electrocapillary two-phase flow.
    Liu W; Tao Y; Ge Z; Zhou J; Xu R; Ren Y
    Electrophoresis; 2021 Apr; 42(7-8):950-966. PubMed ID: 33119900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.