These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37954967)

  • 41. Thermal singularity and droplet motion in one-component fluids on solid substrates with thermal gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061603. PubMed ID: 23005105
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio.
    Liang H; Liu H; Chai Z; Shi B
    Phys Rev E; 2019 Jun; 99(6-1):063306. PubMed ID: 31330728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Contact Angle Measurement on Curved Wetting Surfaces in Multiphase Lattice Boltzmann Method.
    Liu Y; Yao Y; Li Q; Zhong X; He B; Wen B
    Langmuir; 2023 Feb; 39(8):2974-2984. PubMed ID: 36787627
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polygonal non-wetting droplets on microtextured surfaces.
    Lou J; Shi S; Ma C; Zhou X; Huang D; Zheng Q; Lv C
    Nat Commun; 2022 May; 13(1):2685. PubMed ID: 35562518
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Linking Findings in Microfluidics to Membrane Emulsification Process Design: The Importance of Wettability and Component Interactions with Interfaces.
    Schroën K; Ferrando M; de Lamo-Castellví S; Sahin S; Güell C
    Membranes (Basel); 2016 May; 6(2):. PubMed ID: 27187484
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-phase Model of Visco-elastic Incompressible Fluid Flow and its Computational Implementation.
    Xu S; Alber M; Xu Z
    Commun Comput Phys; 2019; 25(2):586-624. PubMed ID: 33868491
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of surface roughness on capillary rise in micro-grooves.
    Bamorovat Abadi G; Bahrami M
    Sci Rep; 2022 Sep; 12(1):14867. PubMed ID: 36050409
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mesoscale simulation of soft particles with tunable contact angle in multicomponent fluids.
    Wouters M; Aouane O; Krüger T; Harting J
    Phys Rev E; 2019 Sep; 100(3-1):033309. PubMed ID: 31639950
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Numerical Study of Micro-Droplet Spreading Behaviors on Wettability-Confined Tracks Using a Three-Dimensional Phase-Field Lattice Boltzmann Model.
    Xu D; Ba Y; Sun J; Fu X
    Langmuir; 2020 Jan; 36(1):340-353. PubMed ID: 31851519
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow.
    Ahmadlouydarab M; Azaiez J; Chen Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023002. PubMed ID: 25768592
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On the phase-field modelling of a miscible liquid/liquid boundary.
    Xie R; Vorobev A
    J Colloid Interface Sci; 2016 Feb; 464():48-58. PubMed ID: 26609922
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phase-field modelling for metals and colloids and nucleation therein-an overview.
    Emmerich H
    J Phys Condens Matter; 2009 Nov; 21(46):464103. PubMed ID: 21715867
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Substrate Wettability Influences Internal Jet Formation and Mixing during Droplet Coalescence.
    Sykes TC; Harbottle D; Khatir Z; Thompson HM; Wilson MCT
    Langmuir; 2020 Aug; 36(32):9596-9607. PubMed ID: 32787133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stimuli-responsive surfaces for switchable wettability and adhesion.
    Li C; Li M; Ni Z; Guan Q; Blackman BRK; Saiz E
    J R Soc Interface; 2021 Jun; 18(179):20210162. PubMed ID: 34129792
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis.
    Ramos-Alvarado B; Kumar S; Peterson GP
    J Chem Phys; 2015 Jul; 143(4):044703. PubMed ID: 26233153
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bouncing dynamics of impact droplets on bioinspired surfaces with mixed wettability and directional transport control.
    Yang K; Liu Q; Lin Z; Liang Y; Liu C
    J Colloid Interface Sci; 2022 Nov; 626():193-207. PubMed ID: 35792455
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Revisiting the supplementary relationship of dynamic contact angles measured by sessile-droplet and captive-bubble methods: Role of surface roughness.
    Sarkar S; Roy T; Roy A; Moitra S; Ganguly R; Megaridis CM
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):690-697. PubMed ID: 32814192
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamics of simultaneously impinging drops on a dry surface: Role of inhomogeneous wettability and impact shape.
    Ashoke Raman K
    J Colloid Interface Sci; 2018 Apr; 516():232-247. PubMed ID: 29408110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.