These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 37955071)

  • 41. Prediction of ground reaction forces during gait based on kinematics and a neural network model.
    Oh SE; Choi A; Mun JH
    J Biomech; 2013 Sep; 46(14):2372-80. PubMed ID: 23962528
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated classification of neurological disorders of gait using spatio-temporal gait parameters.
    Pradhan C; Wuehr M; Akrami F; Neuhaeusser M; Huth S; Brandt T; Jahn K; Schniepp R
    J Electromyogr Kinesiol; 2015 Apr; 25(2):413-22. PubMed ID: 25725811
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Decomposition of three-dimensional ground-reaction forces under both feet during gait.
    Samadi B; Raison M; Ballaz L; Achiche S
    J Musculoskelet Neuronal Interact; 2017 Dec; 17(4):283-291. PubMed ID: 29199187
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Experimental gait study based on the plantar pressure test for the young people].
    Fang Z; Zhang X; Wang C; Gu X; Ma S; Wang L; Chen S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1278-82, 1293. PubMed ID: 25868244
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep Neural Network-Based Gait Classification Using Wearable Inertial Sensor Data.
    Jung D; Nguyen MD; Han J; Park M; Lee K; Yoo S; Kim J; Mun KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3624-3628. PubMed ID: 31946661
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recognition of affect based on gait patterns.
    Karg M; Kühnlenz K; Buss M
    IEEE Trans Syst Man Cybern B Cybern; 2010 Aug; 40(4):1050-61. PubMed ID: 20350859
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discriminating features of ground reaction forces in overweight old and young adults during walking using functional principal component analysis.
    Kim HK; Dai X; Lu SH; Lu TW; Chou LS
    Gait Posture; 2022 May; 94():166-172. PubMed ID: 35339964
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The present situation and future development of research on new algorithms of gait recognition with multi-angles].
    Li Y; Li K; Ji X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Feb; 31(1):205-9. PubMed ID: 24804512
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The humanID gait challenge problem: data sets, performance, and analysis.
    Sarkar S; Phillips PJ; Liu Z; Vega IR; Grother P; Bowyer KW
    IEEE Trans Pattern Anal Mach Intell; 2005 Feb; 27(2):162-77. PubMed ID: 15688555
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimation of unmeasured ground reaction force data based on the oscillatory characteristics of the center of mass during human walking.
    Ryu HX; Park S
    J Biomech; 2018 Apr; 71():135-143. PubMed ID: 29525240
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wearable Sensor-Based Gait Analysis for Age and Gender Estimation.
    Ahad MAR; Ngo TT; Antar AD; Ahmed M; Hossain T; Muramatsu D; Makihara Y; Inoue S; Yagi Y
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32344673
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Agreement of spatio-temporal gait parameters between a vertical ground reaction force decomposition algorithm and a motion capture system.
    Veilleux LN; Raison M; Rauch F; Robert M; Ballaz L
    Gait Posture; 2016 Jan; 43():257-64. PubMed ID: 26552654
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PCA-based SVM for automatic recognition of gait patterns.
    Wu J; Wang J
    J Appl Biomech; 2008 Feb; 24(1):83-7. PubMed ID: 18309187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of artificial neural networks for assessing parameters of gait symmetry.
    Michalski R; Wit A; Gajewski J
    Acta Bioeng Biomech; 2011; 13(4):65-70. PubMed ID: 22339345
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gait Characteristics and Fatigue Profiles When Standing on Surfaces with Different Hardness: Gait Analysis and Machine Learning Algorithms.
    Lu Z; Sun D; Xu D; Li X; Baker JS; Gu Y
    Biology (Basel); 2021 Oct; 10(11):. PubMed ID: 34827076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia.
    Zhang Y; Ma Y
    Comput Biol Med; 2019 Mar; 106():33-39. PubMed ID: 30665140
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accuracy and optimization of force platform gait analysis in Labradors with cranial cruciate disease evaluated at a walking gait.
    Evans R; Horstman C; Conzemius M
    Vet Surg; 2005; 34(5):445-9. PubMed ID: 16266335
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of Backpacks on Ground Reaction Forces in Children of Different Ages When Walking, Running, and Jumping.
    Barbosa JP; Marques MC; Neiva HP; Esteves D; Alonso-Martínez AM; Izquierdo M; Ramirez-Campillo R; Alvarez C; Marinho DA
    Int J Environ Res Public Health; 2019 Dec; 16(24):. PubMed ID: 31861106
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automatic classification of asymptomatic and osteoarthritis knee gait patterns using kinematic data features and the nearest neighbor classifier.
    Mezghani N; Husse S; Boivin K; Turcot K; Aissaoui R; Hagemeister N; de Guise JA
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1230-2. PubMed ID: 18334419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.