These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37955323)

  • 1. In-plane structure of the electric double layer in the primitive model using classical density functional theory.
    Cats P; Härtel A
    J Chem Phys; 2023 Nov; 159(18):. PubMed ID: 37955323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dense ionic fluids confined in planar capacitors: in- and out-of-plane structure from classical density functional theory.
    Härtel A; Samin S; van Roij R
    J Phys Condens Matter; 2016 Jun; 28(24):244007. PubMed ID: 27116552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it.
    Härtel A
    J Phys Condens Matter; 2017 Oct; 29(42):423002. PubMed ID: 28898203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanopatterning of Electrode Surfaces as a Potential Route to Improve the Energy Density of Electric Double-Layer Capacitors: Insight from Molecular Simulations.
    Xing L; Vatamanu J; Smith GD; Bedrov D
    J Phys Chem Lett; 2012 May; 3(9):1124-9. PubMed ID: 26288046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of ion size and electrode curvature on electrical double layers in ionic liquids.
    Feng G; Qiao R; Huang J; Dai S; Sumpter BG; Meunier V
    Phys Chem Chem Phys; 2011 Jan; 13(3):1152-61. PubMed ID: 21079823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating ion-specific van der Waals and soft repulsive interactions in the Poisson-Boltzmann theory of electrical double layers.
    Seal A; Tiwari U; Gupta A; Govind Rajan A
    Phys Chem Chem Phys; 2023 Aug; 25(32):21708-21722. PubMed ID: 37551893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.
    Haskins JB; Lawson JW
    J Chem Phys; 2016 May; 144(18):184707. PubMed ID: 27179500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of a liquid flow on the forces between charged solid surfaces and the non-equilibrium electric double layer.
    McNamee CE
    Adv Colloid Interface Sci; 2019 Apr; 266():21-33. PubMed ID: 30831437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of the Electric Double Layer in Electrolyte Solutions.
    Funari R; Matsumoto A; de Bruyn JR; Shen AQ
    Anal Chem; 2020 Jun; 92(12):8244-8253. PubMed ID: 32419462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of Anion Shape on the Electrical Double Layer Microstructure and Capacitance of Ionic Liquids-Based Supercapacitors by Molecular Simulations.
    Chen M; Li S; Feng G
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28212336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A "counter-charge layer in generalized solvents" framework for electrical double layers in neat and hybrid ionic liquid electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2011 Aug; 13(32):14723-34. PubMed ID: 21755079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Molecular Mapping of Ionic Liquids at Electrified Interfaces.
    Zhou S; Panse KS; Motevaselian MH; Aluru NR; Zhang Y
    ACS Nano; 2020 Dec; 14(12):17515-17523. PubMed ID: 33227191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge driven lateral structural evolution of ions in electric double layer capacitors strongly correlates with differential capacitance.
    Le Ma J; Meng Q; Fan J
    Phys Chem Chem Phys; 2018 Mar; 20(12):8054-8063. PubMed ID: 29513322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of interfacial ion structuring on range and magnitude of electric double layer, hydration, and adhesive interactions between mica surfaces in 0.05-3 M Li⁺ and Cs⁺ electrolyte solutions.
    Baimpos T; Shrestha BR; Raman S; Valtiner M
    Langmuir; 2014 Apr; 30(15):4322-32. PubMed ID: 24655312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions.
    Yu YX; Wu J; Gao GH
    J Chem Phys; 2004 Apr; 120(15):7223-33. PubMed ID: 15267630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic Charging Inversion in Ionic Liquid Electric Double Layers.
    Jiang J; Cao D; Jiang DE; Wu J
    J Phys Chem Lett; 2014 Jul; 5(13):2195-200. PubMed ID: 26279533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric Double-Layer Effects Induce Separation of Aqueous Metal Ions.
    Ji Q; An X; Liu H; Guo L; Qu J
    ACS Nano; 2015 Nov; 9(11):10922-30. PubMed ID: 26481603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innermost Ion Association Configuration Is a Key Structural Descriptor of Ionic Liquids at Electrified Interfaces.
    Panse KS; Wu H; Zhou S; Zhao F; Aluru NR; Zhang Y
    J Phys Chem Lett; 2022 Oct; 13(40):9464-9472. PubMed ID: 36198103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A classical density functional theory for the asymmetric restricted primitive model of ionic liquids.
    Lu H; Nordholm S; Woodward CE; Forsman J
    J Chem Phys; 2018 May; 148(19):193814. PubMed ID: 30307217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of counterion adsorption in the electrical double layer.
    Voukadinova A; Gillespie D
    J Chem Phys; 2019 Apr; 150(15):154706. PubMed ID: 31005115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.