BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37955372)

  • 1. Chemical Affinity-Based Isolation of Extracellular Vesicles from Biofluids for Proteomics and Phosphoproteomics Analysis.
    Liu YK; Luo Z; Iliuk A; Tao WA
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37955372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics, Phosphoproteomics and Mirna Analysis of Circulating Extracellular Vesicles through Automated and High-Throughput Isolation.
    Zhang H; Cai YH; Ding Y; Zhang G; Liu Y; Sun J; Yang Y; Zhan Z; Iliuk A; Gu Z; Gu Y; Tao WA
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential phosphoproteomics and N-glycoproteomics of plasma-derived extracellular vesicles.
    Andaluz Aguilar H; Iliuk AB; Chen IH; Tao WA
    Nat Protoc; 2020 Jan; 15(1):161-180. PubMed ID: 31863077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma-Derived Extracellular Vesicle Phosphoproteomics through Chemical Affinity Purification.
    Iliuk A; Wu X; Li L; Sun J; Hadisurya M; Boris RS; Tao WA
    J Proteome Res; 2020 Jul; 19(7):2563-2574. PubMed ID: 32396726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational proteomics and phosphoproteomics: Tissue to extracellular vesicles.
    Wu X; Iliuk AB; Tao WA
    Adv Clin Chem; 2023; 112():119-153. PubMed ID: 36642482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling Phosphoproteome Landscape in Circulating Extracellular Vesicles from Microliters of Biofluids through Functionally Tunable Paramagnetic Separation.
    Sun J; Li Q; Ding Y; Wei D; Hadisurya M; Luo Z; Gu Z; Chen B; Tao WA
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202305668. PubMed ID: 37216424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistically Bifunctional Paramagnetic Separation Enables Efficient Isolation of Urine Extracellular Vesicles and Downstream Phosphoproteomic Analysis.
    Sun J; Han S; Ma L; Zhang H; Zhan Z; Aguilar HA; Zhang H; Xiao K; Gu Y; Gu Z; Tao WA
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3622-3630. PubMed ID: 33443402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Efficient Phosphoproteome Capture and Analysis from Urinary Extracellular Vesicles.
    Wu X; Li L; Iliuk A; Tao WA
    J Proteome Res; 2018 Sep; 17(9):3308-3316. PubMed ID: 30080416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible zwitterionic coordination enables rapid, high-yield, and high-purity isolation of extracellular vesicles from biofluids.
    Li Q; Zhang Z; Wang F; Wang X; Zhan S; Yang X; Xu C; Liu D
    Sci Adv; 2023 Apr; 9(15):eadf4568. PubMed ID: 37058564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Update on Isolation Methods for Proteomic Studies of Extracellular Vesicles in Biofluids.
    Li J; He X; Deng Y; Yang C
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31569778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The polysaccharide chitosan facilitates the isolation of small extracellular vesicles from multiple biofluids.
    Kumar A; Dhadi SR; Mai NN; Taylor C; Roy JW; Barnett DA; Lewis SM; Ghosh A; Ouellette RJ
    J Extracell Vesicles; 2021 Sep; 10(11):e12138. PubMed ID: 34478244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics and Phosphoproteomics of Circulating Extracellular Vesicles Provide New Insights into Diabetes Pathobiology.
    Nunez Lopez YO; Iliuk A; Petrilli AM; Glass C; Casu A; Pratley RE
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer.
    Chen IH; Xue L; Hsu CC; Paez JS; Pan L; Andaluz H; Wendt MK; Iliuk AB; Zhu JK; Tao WA
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3175-3180. PubMed ID: 28270605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Post-Translational Modifications in Targeting Protein Cargo to Extracellular Vesicles.
    Atukorala I; Mathivanan S
    Subcell Biochem; 2021; 97():45-60. PubMed ID: 33779913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis.
    Ströhle G; Gan J; Li H
    Anal Bioanal Chem; 2022 Oct; 414(24):7051-7067. PubMed ID: 35732746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-translational and transcriptional dynamics - regulating  extracellular vesicle biology.
    Claridge B; Kastaniegaard K; Stensballe A; Greening DW
    Expert Rev Proteomics; 2019 Jan; 16(1):17-31. PubMed ID: 30457403
    [No Abstract]   [Full Text] [Related]  

  • 17. Ultrafiltration combing with phospholipid affinity-based isolation for metabolomic profiling of urinary extracellular vesicles.
    Lou D; Wang Y; Yang Q; Hu L; Zhu Q
    J Chromatogr A; 2021 Mar; 1640():461942. PubMed ID: 33588274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of Extracellular Vesicles Using Titanium Dioxide Microspheres.
    Santiago VF; Rosa-Fernandes L; Macedo-da-Silva J; Angeli CB; Mule SN; Marinho CRF; Torrecilhas AC; Marie SNK; Palmisano G
    Adv Exp Med Biol; 2024; 1443():1-22. PubMed ID: 38409413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Pot Analytical Pipeline for Efficient and Sensitive Proteomic Analysis of Extracellular Vesicles.
    Liu YK; Wu X; Hadisurya M; Li L; Kaimakliotis H; Iliuk A; Tao WA
    J Proteome Res; 2023 Oct; 22(10):3301-3310. PubMed ID: 37702715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of extracellular vesicles secreted by primary human epithelial endometrial cells reveals key proteins related to embryo implantation.
    Segura-Benítez M; Carbajo-García MC; Corachán A; Faus A; Pellicer A; Ferrero H
    Reprod Biol Endocrinol; 2022 Jan; 20(1):3. PubMed ID: 34980157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.