These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Thouless Pumps and Bulk-Boundary Correspondence in Higher-Order Symmetry-Protected Topological Phases. Wienand JF; Horn F; Aidelsburger M; Bibo J; Grusdt F Phys Rev Lett; 2022 Jun; 128(24):246602. PubMed ID: 35776451 [TBL] [Abstract][Full Text] [Related]
6. Many-Body Invariants for Chern and Chiral Hinge Insulators. Kang B; Lee W; Cho GY Phys Rev Lett; 2021 Jan; 126(1):016402. PubMed ID: 33480785 [TBL] [Abstract][Full Text] [Related]
7. Experimentally Detecting Quantized Zak Phases without Chiral Symmetry in Photonic Lattices. Jiao ZQ; Longhi S; Wang XW; Gao J; Zhou WH; Wang Y; Fu YX; Wang L; Ren RJ; Qiao LF; Jin XM Phys Rev Lett; 2021 Oct; 127(14):147401. PubMed ID: 34652196 [TBL] [Abstract][Full Text] [Related]
8. Generation of Hofstadter's butterfly spectrum using circular arrays of microring resonators. Zimmerling TJ; Van V Opt Lett; 2020 Feb; 45(3):714-717. PubMed ID: 32004292 [TBL] [Abstract][Full Text] [Related]
9. Field-theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology, and beyond. Wang JC; Gu ZC; Wen XG Phys Rev Lett; 2015 Jan; 114(3):031601. PubMed ID: 25658993 [TBL] [Abstract][Full Text] [Related]
10. Flavour Hund's coupling, Chern gaps and charge diffusivity in moiré graphene. Park JM; Cao Y; Watanabe K; Taniguchi T; Jarillo-Herrero P Nature; 2021 Apr; 592(7852):43-48. PubMed ID: 33790447 [TBL] [Abstract][Full Text] [Related]
11. Topological incommensurate magnetization plateaus in quasi-periodic quantum spin chains. Hu HP; Cheng C; Luo HG; Chen S Sci Rep; 2015 Feb; 5():8433. PubMed ID: 25678145 [TBL] [Abstract][Full Text] [Related]
12. Characterizing topological order by studying the ground States on an infinite cylinder. Cincio L; Vidal G Phys Rev Lett; 2013 Feb; 110(6):067208. PubMed ID: 23432303 [TBL] [Abstract][Full Text] [Related]
13. Hofstadter butterfly and integer quantum hall effect in three dimensions. Koshino M; Aoki H; Kuroki K; Kagoshima S; Osada T Phys Rev Lett; 2001 Feb; 86(6):1062-5. PubMed ID: 11178010 [TBL] [Abstract][Full Text] [Related]
15. Many-body topological invariants from randomized measurements in synthetic quantum matter. Elben A; Yu J; Zhu G; Hafezi M; Pollmann F; Zoller P; Vermersch B Sci Adv; 2020 Apr; 6(15):eaaz3666. PubMed ID: 32300654 [TBL] [Abstract][Full Text] [Related]
16. Interacting topological quantum chemistry in 2D with many-body real space invariants. Herzog-Arbeitman J; Bernevig BA; Song ZD Nat Commun; 2024 Feb; 15(1):1171. PubMed ID: 38331985 [TBL] [Abstract][Full Text] [Related]
17. Topological response theory of Abelian symmetry-protected topological phases in two dimensions. Cheng M; Gu ZC Phys Rev Lett; 2014 Apr; 112(14):141602. PubMed ID: 24765942 [TBL] [Abstract][Full Text] [Related]
18. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Dean CR; Wang L; Maher P; Forsythe C; Ghahari F; Gao Y; Katoch J; Ishigami M; Moon P; Koshino M; Taniguchi T; Watanabe K; Shepard KL; Hone J; Kim P Nature; 2013 May; 497(7451):598-602. PubMed ID: 23676673 [TBL] [Abstract][Full Text] [Related]
19. Topological Edge States with Zero Hall Conductivity in a Dimerized Hofstadter Model. Lau A; Ortix C; van den Brink J Phys Rev Lett; 2015 Nov; 115(21):216805. PubMed ID: 26636866 [TBL] [Abstract][Full Text] [Related]
20. Topological criticality in the chiral-symmetric AIII class at strong disorder. Mondragon-Shem I; Hughes TL; Song J; Prodan E Phys Rev Lett; 2014 Jul; 113(4):046802. PubMed ID: 25105642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]