These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37955520)

  • 21. Quantification of Tumor Protein Biomarkers from Lung Patient Serum Using Nanoimpact Electrochemistry.
    Zhang JH; Shen Q; Zhou YG
    ACS Sens; 2021 Jun; 6(6):2320-2329. PubMed ID: 34033456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoconfined Electrochemical Sensing of Single Silver Nanoparticles with a Wireless Nanopore Electrode.
    Yu RJ; Xu SW; Paul S; Ying YL; Cui LF; Daiguji H; Hsu WL; Long YT
    ACS Sens; 2021 Feb; 6(2):335-339. PubMed ID: 33373192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-Particle Electrochemical Imaging Provides Insights into Silver Nanoparticle Dissolution at the Solution-Solid Interface.
    Jiang D; Chen HB; Zhou XL; Liu XW
    ACS Appl Mater Interfaces; 2022 May; 14(19):22658-22665. PubMed ID: 35503924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy.
    Swearer DF; Bourgeois BB; Angell DK; Dionne JA
    Acc Chem Res; 2021 Oct; 54(19):3632-3642. PubMed ID: 34492177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tracking Electrochemistry on Single Nanoparticles with Surface-Enhanced Raman Scattering Spectroscopy and Microscopy.
    Hemmer JV; Joshi PB; Wilson AJ
    J Vis Exp; 2023 May; (195):. PubMed ID: 37246884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitive quantification of mercury ions in real water systems based on an aggregation-collision electrochemical detection.
    Liu L; Peng M; Liang Z; Wu H; Yan H; Zhou YG
    Anal Chim Acta; 2023 Oct; 1276():341638. PubMed ID: 37573116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Managing the Nitrogen Cycle via Plasmonic (Photo)Electrocatalysis: Toward Circular Economy.
    Nazemi M; El-Sayed MA
    Acc Chem Res; 2021 Dec; 54(23):4294-4304. PubMed ID: 34719918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study of sterically and electro-statically stabilized silver nanoparticles for the determination of muscle relaxant tizanidine: Insights of localized surface plasmon resonance, surface enhanced Raman spectroscopy and electrocatalytic activity.
    El-Zahry MR
    Talanta; 2018 Aug; 186():229-237. PubMed ID: 29784354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zaleski S; Wilson AJ; Mattei M; Chen X; Goubert G; Cardinal MF; Willets KA; Van Duyne RP
    Acc Chem Res; 2016 Sep; 49(9):2023-30. PubMed ID: 27602428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmon-enhanced electrochemical oxidation of 4-(hydroxymethyl)benzoic acid.
    Qiu J; Boskin D; Oleson D; Wu W; Anderson M
    J Chem Phys; 2022 Aug; 157(8):081101. PubMed ID: 36049998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes.
    Mahmoud MA; Chamanzar M; Adibi A; El-Sayed MA
    J Am Chem Soc; 2012 Apr; 134(14):6434-42. PubMed ID: 22420824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis.
    Li S; Miao P; Zhang Y; Wu J; Zhang B; Du Y; Han X; Sun J; Xu P
    Adv Mater; 2021 Feb; 33(6):e2000086. PubMed ID: 32201994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On-Chip Electrokinetic Micropumping for Nanoparticle Impact Electrochemistry.
    Weiß LJK; Music E; Rinklin P; Banzet M; Mayer D; Wolfrum B
    Anal Chem; 2022 Aug; 94(33):11600-11609. PubMed ID: 35900877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron Tunneling through Boron Nitride Confirms Marcus-Hush Theory Predictions for Ultramicroelectrodes.
    Velický M; Hu S; Woods CR; Tóth PS; Zólyomi V; Geim AK; Abruña HD; Novoselov KS; Dryfe RAW
    ACS Nano; 2020 Jan; 14(1):993-1002. PubMed ID: 31815429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron transport, light energy conversion and proteomic responses of periphyton in photosynthesis under exposure to AgNPs.
    Liu J; Zhang H; Yan L; Kerr PG; Zhang S; Wu Y
    J Hazard Mater; 2021 Jan; 401():123809. PubMed ID: 33113741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Performance Photocatalytic Hydrogen Production and Degradation of Levofloxacin by Wide Spectrum-Responsive Ag/Fe
    Kumar A; Rana A; Sharma G; Naushad M; Al-Muhtaseb AH; Guo C; Iglesias-Juez A; Stadler FJ
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40474-40490. PubMed ID: 30387348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ionic liquids in surface electrochemistry.
    Liu H; Liu Y; Li J
    Phys Chem Chem Phys; 2010 Feb; 12(8):1685-97. PubMed ID: 20145833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies of surface plasmon resonance of silver nanoparticles reduced by aqueous extract of shortleaf spikesedge and their catalytic activity.
    Isa N; Osman MS; Abdul Hamid H; Inderan V; Lockman Z
    Int J Phytoremediation; 2023; 25(5):658-669. PubMed ID: 35858487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmon-Enhanced Electrocatalysis of Conductive Polymer-Based Nano-Heterojunction for Small Molecule Metabolites Diagnostics.
    Huang Y; Fu R; Zhu Z; Liu C; Liu S; Yu P; Yan L; Zhou Z; Ning C; Wang Z
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):39799-39807. PubMed ID: 36018044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.