These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37955657)
1. Stretchable and Durable Bacterial Cellulose-Based Thermocell with Improved Thermopower Density for Low-Grade Heat Harvesting. Wu Z; Wang B; Li J; Jia Y; Chen S; Wang H; Chen L; Shuai L Nano Lett; 2023 Nov; 23(22):10297-10304. PubMed ID: 37955657 [TBL] [Abstract][Full Text] [Related]
2. Strong Tough Thermogalvanic Hydrogel Thermocell With Extraordinarily High Thermoelectric Performance. Liu L; Zhang D; Bai P; Mao Y; Li Q; Guo J; Fang Y; Ma R Adv Mater; 2023 Aug; 35(32):e2300696. PubMed ID: 37222174 [TBL] [Abstract][Full Text] [Related]
3. Bacterial cellulose-based dual chemical reaction coupled hydrogel thermocells for efficient heat harvesting. Zong Y; Lou J; Li H; Li X; Jiang Y; Ding Q; Liu Z; Han W Carbohydr Polym; 2022 Oct; 294():119789. PubMed ID: 35868797 [TBL] [Abstract][Full Text] [Related]
4. Advanced Bacterial Cellulose Ionic Conductors with Gigantic Thermopower for Low-Grade Heat Harvesting. Wu Z; Wang B; Li J; Wu R; Jin M; Zhao H; Chen S; Wang H Nano Lett; 2022 Oct; 22(20):8152-8160. PubMed ID: 36219168 [TBL] [Abstract][Full Text] [Related]
5. Cellulose ionic conductor with tunable Seebeck coefficient for low-grade heat harvesting. Hu Y; Chen M; Qin C; Zhang J; Lu A Carbohydr Polym; 2022 Sep; 292():119650. PubMed ID: 35725205 [TBL] [Abstract][Full Text] [Related]
6. Low-Grade Thermal Energy Harvesting and Self-Powered Sensing Based on Thermogalvanic Hydrogels. Zhang J; Bai C; Wang Z; Liu X; Li X; Cui X Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677217 [TBL] [Abstract][Full Text] [Related]
7. Wearable Device with High Thermoelectric Performance and Long-Lasting Usability Based on Gel-Thermocells for Body Heat Harvesting. Jia Y; Zhang S; Li J; Han Z; Zhang D; Qu X; Wu Z; Wang H; Chen S Small; 2024 Sep; ():e2401427. PubMed ID: 39285822 [TBL] [Abstract][Full Text] [Related]
8. Boosting Thermogalvanic Cell Performance through Synergistic Redox and Thermogalvanic Corrosion. Fang W; Luo H; Mwakitawa IM; Yuan F; Lin X; Wang Y; Yang H; Shumilova T; Hu L; Zheng Y; Li C; Ouyang J; Sun K ChemSusChem; 2024 Oct; ():e202401749. PubMed ID: 39420741 [TBL] [Abstract][Full Text] [Related]
9. Multi-Ionic Hydrogel with Outstanding Heat-to-Electrical Performance for Low-Grade Heat Harvesting. Zhou Y; Dong Z; He Y; Zhu W; Yuan Y; Zeng H; Li C; Chen S; Sun K Chem Asian J; 2022 Nov; 17(22):e202200850. PubMed ID: 36074542 [TBL] [Abstract][Full Text] [Related]
10. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Han Y; Zhang J; Hu R; Xu D Sci Adv; 2022 Feb; 8(7):eabl5318. PubMed ID: 35179966 [TBL] [Abstract][Full Text] [Related]
11. Environmentally Tolerant Ionic Hydrogel with High Power Density for Low-Grade Heat Harvesting. Chen J; Shi C; Wu L; Deng Y; Wang Y; Zhang L; Zhang Q; Peng F; Tao XM; Zhang M; Zeng W ACS Appl Mater Interfaces; 2022 Aug; 14(30):34714-34721. PubMed ID: 35876495 [TBL] [Abstract][Full Text] [Related]
12. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Duan J; Feng G; Yu B; Li J; Chen M; Yang P; Feng J; Liu K; Zhou J Nat Commun; 2018 Dec; 9(1):5146. PubMed ID: 30514952 [TBL] [Abstract][Full Text] [Related]
13. Stretchable Thermoelectric Fibers with Three-Dimensional Interconnected Porous Network for Low-Grade Body Heat Energy Harvesting. Li J; Xia B; Xiao X; Huang Z; Yin J; Jiang Y; Wang S; Gao H; Shi Q; Xie Y; Chen J ACS Nano; 2023 Oct; 17(19):19232-19241. PubMed ID: 37751200 [TBL] [Abstract][Full Text] [Related]
14. Synergistic Anisotropic Network and Hierarchical Electrodes Endow Cost-Effective N-Type Quasi-Solid State Thermocell with Boosted Electricity Production. Meng H; Gao W; Chen Y Small; 2024 Jul; 20(28):e2310777. PubMed ID: 38299481 [TBL] [Abstract][Full Text] [Related]
15. Exploring Pyrazine-Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters. Lee CY; Hsu CC; Wang CH; Jeng US; Tung SH; Hu CC; Liu CL Small; 2024 Oct; ():e2407622. PubMed ID: 39358979 [TBL] [Abstract][Full Text] [Related]
16. An Electricity-Generating Window Made of a Transparent Energy Harvester of Thermocells. Lee JH; Shin G; Baek JY; Kang TJ ACS Appl Mater Interfaces; 2021 May; 13(18):21157-21165. PubMed ID: 33793183 [TBL] [Abstract][Full Text] [Related]
17. Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Yang P; Liu K; Chen Q; Mo X; Zhou Y; Li S; Feng G; Zhou J Angew Chem Int Ed Engl; 2016 Sep; 55(39):12050-3. PubMed ID: 27557890 [TBL] [Abstract][Full Text] [Related]
18. Highly Antifreezing Thermogalvanic Hydrogels for Human Heat Harvesting in Ultralow Temperature Environments. Zhang D; Zhou Y; Mao Y; Li Q; Liu L; Bai P; Ma R Nano Lett; 2023 Dec; 23(23):11272-11279. PubMed ID: 38038230 [TBL] [Abstract][Full Text] [Related]
19. Chaotropic Effect-Boosted Thermogalvanic Ionogel Thermocells for All-Weather Power Generation. Yang M; Hu Y; Wang X; Chen H; Yu J; Li W; Li R; Yan F Adv Mater; 2024 Apr; 36(16):e2312249. PubMed ID: 38193634 [TBL] [Abstract][Full Text] [Related]
20. Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells. Peng P; Zhou J; Liang L; Huang X; Lv H; Liu Z; Chen G Nanomicro Lett; 2022 Mar; 14(1):81. PubMed ID: 35333992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]