These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37956022)

  • 1. Photo-cross-linked Hydrogels for Cartilage and Osteochondral Repair.
    Zhu Y; Chen J; Liu H; Zhang W
    ACS Biomater Sci Eng; 2023 Dec; 9(12):6567-6585. PubMed ID: 37956022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.
    Yang J; Zhang YS; Yue K; Khademhosseini A
    Acta Biomater; 2017 Jul; 57():1-25. PubMed ID: 28088667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gellan Gum-Based Hydrogels for Osteochondral Repair.
    Costa L; Silva-Correia J; Oliveira JM; Reis RL
    Adv Exp Med Biol; 2018; 1058():281-304. PubMed ID: 29691827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Bioprinting Photo-Crosslinkable Hydrogels for Bone and Cartilage Repair.
    Mei Q; Rao J; Bei HP; Liu Y; Zhao X
    Int J Bioprint; 2021; 7(3):367. PubMed ID: 34286152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrazone covalent adaptable networks modulate extracellular matrix deposition for cartilage tissue engineering.
    Richardson BM; Wilcox DG; Randolph MA; Anseth KS
    Acta Biomater; 2019 Jan; 83():71-82. PubMed ID: 30419278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage.
    Qi C; Liu J; Jin Y; Xu L; Wang G; Wang Z; Wang L
    Biomaterials; 2018 May; 163():89-104. PubMed ID: 29455069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of biphasic cartilage-bone integrated scaffolds based on tissue-specific photo-crosslinkable acellular matrix hydrogels.
    Hua Y; Huo Y; Bai B; Hao J; Hu G; Ci Z; Wu X; Yu M; Wang X; Chen H; Ren W; Zhang Y; Wang X; Zhou G
    Mater Today Bio; 2022 Dec; 17():100489. PubMed ID: 36388453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering.
    Radhakrishnan J; Subramanian A; Krishnan UM; Sethuraman S
    Biomacromolecules; 2017 Jan; 18(1):1-26. PubMed ID: 27966916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Cross-Linkable Hydrogels as a Dynamic Matrix for Tissue Regenerative Medicine.
    Park KM; Park KD
    Tissue Eng Regen Med; 2018 Oct; 15(5):547-557. PubMed ID: 30603578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering.
    Zhang Y; Yu J; Ren K; Zuo J; Ding J; Chen X
    Biomacromolecules; 2019 Apr; 20(4):1478-1492. PubMed ID: 30843390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of microstructure-controllable COL-HA-PVA hydrogels for cartilage repair.
    Xie J; Wang W; Zhao R; Lu W; Chen L; Su W; Zeng M; Hu Y
    J Mater Sci Mater Med; 2021 Aug; 32(9):100. PubMed ID: 34406511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering.
    You F; Eames BF; Chen X
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28737701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering.
    Dadsetan M; Szatkowski JP; Yaszemski MJ; Lu L
    Biomacromolecules; 2007 May; 8(5):1702-9. PubMed ID: 17419584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioprinting Via a Dual-Gel Bioink Based on Poly(Vinyl Alcohol) and Solubilized Extracellular Matrix towards Cartilage Engineering.
    Setayeshmehr M; Hafeez S; van Blitterswijk C; Moroni L; Mota C; Baker MB
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33918892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Cross-Linkable Polymer Systems and Composites for Osteochondral Regeneration.
    Puertas-Bartolomé M; Benito-Garzón L; Olmeda-Lozano M
    Adv Exp Med Biol; 2018; 1058():327-355. PubMed ID: 29691829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering.
    Hu M; Yang J; Xu J
    Drug Deliv; 2021 Dec; 28(1):607-619. PubMed ID: 33739203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating design parameters to drive cell invasion into hydrogels for osteochondral tissue formation.
    Schwab A; Wesdorp MA; Xu J; Abinzano F; Loebel C; Falandt M; Levato R; Eglin D; Narcisi R; Stoddart MJ; Malda J; Burdick JA; D'Este M; van Osch GJVM
    J Orthop Translat; 2023 Jul; 41():42-53. PubMed ID: 37691639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation.
    Vainieri ML; Lolli A; Kops N; D'Atri D; Eglin D; Yayon A; Alini M; Grad S; Sivasubramaniyan K; van Osch GJVM
    Acta Biomater; 2020 Jan; 101():293-303. PubMed ID: 31726249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyelectrolyte Hydrogels for Tissue Engineering and Regenerative Medicine.
    Wang CG; Surat'man NEB; Chang JJ; Ong ZL; Li B; Fan X; Loh XJ; Li Z
    Chem Asian J; 2022 Sep; 17(18):e202200604. PubMed ID: 35869819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.