These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3795614)

  • 1. Potentiating effects of angiotensin II on norepinephrine-induced vasoconstriction in isolated and perfused dog mesenteric arteries.
    Chiba S; Tsukada M
    Jpn J Pharmacol; 1986 Sep; 42(1):141-4. PubMed ID: 3795614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin II-induced tachyphylactic constrictions in isolated and perfused canine mesenteric arteries.
    Chiba S; Tsukada M
    Tohoku J Exp Med; 1986 Dec; 150(4):417-26. PubMed ID: 3564004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiating effect of tyramine on acetaldehyde-induced vasoconstriction in isolated dog mesenteric arteries.
    Chiba S; Tsukada M
    Jpn J Pharmacol; 1987 Jul; 44(3):365-8. PubMed ID: 2888918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentiation of pressor effects of noradrenaline and potassium ions in the rat mesenteric arteries by physiological concentrations of angiotensin II: effects of prostaglandin E2 and cortisol.
    Kondo K; Manku MS; Horrobin DF; Boucher R; Genest J
    Clin Sci Mol Med; 1977 Sep; 53(3):233-9. PubMed ID: 913046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lead-cadmium interaction effect on the responsiveness of rat mesenteric vessels to norepinephrine and angiotensin II.
    Skoczyńska A; Wróbel J; Andrzejak R
    Toxicology; 2001 May; 162(3):157-70. PubMed ID: 11369112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Captopril attenuates adrenergic vasoconstriction in rat mesenteric arteries by angiotensin-dependent and -independent mechanisms.
    Collis MG; Keddie JR
    Clin Sci (Lond); 1981 Sep; 61(3):281-6. PubMed ID: 7021045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological analysis of vasoconstrictor responses to ATP of isolated, perfused dog mesenteric arteries.
    Chiba S; Tsukada M
    Arch Int Pharmacodyn Ther; 1986 May; 281(1):79-88. PubMed ID: 3753099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of vasoconstrictor responses to thiopental and barium chloride by intraluminal treatment with saponin in isolated canine mesenteric arteries.
    Chiba S; Tsukada M
    Heart Vessels; 1986; 2(2):102-5. PubMed ID: 3463562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predominant sensitivity to tyramine in the isolated intermediate auricular artery of the dog.
    Chiba S; Ito T
    J Auton Pharmacol; 1985 Jun; 5(2):109-14. PubMed ID: 4019528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of thromboxane A2-induced vasocontraction by KF4939, a new anti-platelet agent, in rabbit mesenteric and dog coronary arteries.
    Yamada K; Kubo K; Shuto K; Nakamizo N
    Jpn J Pharmacol; 1984 Nov; 36(3):283-90. PubMed ID: 6521073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of vasoconstrictor actions of norepinephrine and potassium chloride before and after damage of endothelium by saponin.
    Chiba S; Tsukada M
    Heart Vessels; 1986; 2(1):1-5. PubMed ID: 3722081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responsiveness to vasoactive agents of cerebral and mesenteric arteries isolated from control and reserpine-treated dogs.
    Hayashi S; Miyazaki M; Toda N
    Br J Pharmacol; 1980 Mar; 68(3):473-8. PubMed ID: 7052340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different sensitivities of vasoconstrictor responses to serotonin and KCl of isolated and perfused dog mesenteric arteries with and without endothelia.
    Chiba S; Tsukada M
    Jpn J Pharmacol; 1985 Oct; 39(2):271-3. PubMed ID: 4087571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular responses of ophthalmic arteries to exogenous and endogenous norepinephrine.
    Ohkubo H; Chiba S
    Exp Eye Res; 1989 Apr; 48(4):539-47. PubMed ID: 2497024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological analysis of 5-HT-induced vasoconstriction in isolated, perfused dog skeletal muscle arteries.
    Sinanović O; Chiba S
    Eur J Pharmacol; 1987 Nov; 143(3):353-60. PubMed ID: 2891553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular reactivity to noradrenaline, potassium chloride, and angiotensin II in the rat perfused mesenteric vasculature preparation, during the development of renal hypertension.
    Collis MG; Alps BJ
    Cardiovasc Res; 1975 Jan; 9(1):118-26. PubMed ID: 1122505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiation of KCl-induced vasoconstriction by saponin treatment in isolated canine mesenteric arteries.
    Chiba S; Tsukada M
    Jpn J Pharmacol; 1984 Dec; 36(4):535-7. PubMed ID: 6527444
    [No Abstract]   [Full Text] [Related]  

  • 18. Blocking effects of nipradilol on vasoconstrictor responses to periarterial nerve stimulation and alpha-adrenoceptor agonists in isolated and perfused canine mesenteric arteries.
    Chiba S; Tsukada M
    Pharmacology; 1987; 35(2):112-20. PubMed ID: 2888138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasoconstrictor responses of isolated and perfused canine mesenteric arteries to alpha-adrenoceptor agonists.
    Chiba S; Tsukada M
    Arch Int Pharmacodyn Ther; 1984 Oct; 271(2):241-8. PubMed ID: 6150690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of magnesium on the vasoconstrictor responses to norepinephrine and potassium chloride in the rat mesenteric artery.
    Suzuki H; Kondo K; Handa M; Saruta T
    Jpn Heart J; 1982 Sep; 23(5):783-9. PubMed ID: 7176086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.